Searching for Hamilton approach : 2 results found | RSS Feed for this search

3.024 Electronic, Optical and Magnetic Properties of Materials (MIT) 3.024 Electronic, Optical and Magnetic Properties of Materials (MIT)

Description

This course describes how electronic, optical and magnetic properties of materials originate from their electronic and molecular structure and how these properties can be designed for particular applications. It offers experimental exploration of the electronic, optical and magnetic properties of materials through hands-on experimentation and practical materials examples. This course describes how electronic, optical and magnetic properties of materials originate from their electronic and molecular structure and how these properties can be designed for particular applications. It offers experimental exploration of the electronic, optical and magnetic properties of materials through hands-on experimentation and practical materials examples.

Subjects

electronic properites | electronic properites | optical properties | optical properties | magnetic properties | magnetic properties | materials | materials | Hamilton approach | Hamilton approach | Schrödinger’s Equation | Schrödinger’s Equation | mechanics | mechanics | quantum mechanics | quantum mechanics | spectral decomposition | spectral decomposition | symmetries | symmetries | angular momentum | angular momentum | periodic potentials | periodic potentials | band diagrams | band diagrams | Fermi | Fermi | Fermi-Dirac | Fermi-Dirac | p-n junction | p-n junction | light emitting diodes | light emitting diodes | wave optics | wave optics | electromagnetic waves | electromagnetic waves | magnetization | magnetization | semiconductor devices | semiconductor devices | Maxwell's equations | Maxwell's equations | photonic bands | photonic bands

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.024 Electronic, Optical and Magnetic Properties of Materials (MIT)

Description

This course describes how electronic, optical and magnetic properties of materials originate from their electronic and molecular structure and how these properties can be designed for particular applications. It offers experimental exploration of the electronic, optical and magnetic properties of materials through hands-on experimentation and practical materials examples.

Subjects

electronic properites | optical properties | magnetic properties | materials | Hamilton approach | dinger?s Equation | mechanics | quantum mechanics | spectral decomposition | symmetries | angular momentum | periodic potentials | band diagrams | Fermi | Fermi-Dirac | p-n junction | light emitting diodes | wave optics | electromagnetic waves | magnetization | semiconductor devices | Maxwell's equations | photonic bands

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata