Searching for Optimization: network flows : 4 results found | RSS Feed for this search

18.086 Mathematical Methods for Engineers II (MIT) 18.086 Mathematical Methods for Engineers II (MIT)

Description

Includes audio/video content: AV lectures. This graduate-level course is a continuation of Mathematical Methods for Engineers I (18.085). Topics include numerical methods; initial-value problems; network flows; and optimization. Includes audio/video content: AV lectures. This graduate-level course is a continuation of Mathematical Methods for Engineers I (18.085). Topics include numerical methods; initial-value problems; network flows; and optimization.

Subjects

Scientific computing: Fast Fourier Transform | Scientific computing: Fast Fourier Transform | finite differences | finite differences | finite elements | finite elements | spectral method | spectral method | numerical linear algebra | numerical linear algebra | Complex variables and applications | Complex variables and applications | Initial-value problems: stability or chaos in ordinary differential equations | Initial-value problems: stability or chaos in ordinary differential equations | wave equation versus heat equation | wave equation versus heat equation | conservation laws and shocks | conservation laws and shocks | dissipation and dispersion | dissipation and dispersion | Optimization: network flows | Optimization: network flows | linear programming | linear programming | Scientific computing: Fast Fourier Transform | finite differences | finite elements | spectral method | numerical linear algebra | Scientific computing: Fast Fourier Transform | finite differences | finite elements | spectral method | numerical linear algebra | Initial-value problems: stability or chaos in ordinary differential equations | wave equation versus heat equation | conservation laws and shocks | dissipation and dispersion | Initial-value problems: stability or chaos in ordinary differential equations | wave equation versus heat equation | conservation laws and shocks | dissipation and dispersion | Optimization: network flows | linear programming | Optimization: network flows | linear programming

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.086 Mathematical Methods for Engineers II (MIT)

Description

This graduate-level course is a continuation of Mathematical Methods for Engineers I (18.085). Topics include numerical methods; initial-value problems; network flows; and optimization.

Subjects

Scientific computing: Fast Fourier Transform | finite differences | finite elements | spectral method | numerical linear algebra | Complex variables and applications | Initial-value problems: stability or chaos in ordinary differential equations | wave equation versus heat equation | conservation laws and shocks | dissipation and dispersion | Optimization: network flows | linear programming | Scientific computing: Fast Fourier Transform | finite differences | finite elements | spectral method | numerical linear algebra | Initial-value problems: stability or chaos in ordinary differential equations | wave equation versus heat equation | conservation laws and shocks | dissipation and dispersion | Optimization: network flows | linear programming

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.086 Mathematical Methods for Engineers II (MIT) 18.086 Mathematical Methods for Engineers II (MIT)

Description

This graduate-level course is a continuation of Mathematical Methods for Engineers I (18.085). Topics include numerical methods; initial-value problems; network flows; and optimization.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site. MATLAB® software is required to run the .m files found on this course site. This graduate-level course is a continuation of Mathematical Methods for Engineers I (18.085). Topics include numerical methods; initial-value problems; network flows; and optimization.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site. MATLAB® software is required to run the .m files found on this course site.

Subjects

Scientific computing: Fast Fourier Transform | Scientific computing: Fast Fourier Transform | finite differences | finite differences | finite elements | finite elements | spectral method | spectral method | numerical linear algebra | numerical linear algebra | Complex variables and applications | Complex variables and applications | Initial-value problems: stability or chaos in ordinary differential equations | Initial-value problems: stability or chaos in ordinary differential equations | wave equation versus heat equation | wave equation versus heat equation | conservation laws and shocks | conservation laws and shocks | dissipation and dispersion | dissipation and dispersion | Optimization: network flows | Optimization: network flows | linear programming | linear programming

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.086 Mathematical Methods for Engineers II (MIT)

Description

This graduate-level course is a continuation of Mathematical Methods for Engineers I (18.085). Topics include numerical methods; initial-value problems; network flows; and optimization.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site. MATLAB® software is required to run the .m files found on this course site.

Subjects

Scientific computing: Fast Fourier Transform | finite differences | finite elements | spectral method | numerical linear algebra | Complex variables and applications | Initial-value problems: stability or chaos in ordinary differential equations | wave equation versus heat equation | conservation laws and shocks | dissipation and dispersion | Optimization: network flows | linear programming

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata