Searching for biotechnology : 75 results found | RSS Feed for this search

1 2 3

7.88J Protein Folding Problem (MIT) 7.88J Protein Folding Problem (MIT)

Description

This course focuses on the mechanisms by which the amino acid sequence of polypeptide chains (proteins), determine their three-dimensional conformation. Topics in this course include sequence determinants of secondary structure, the folding of newly synthesized polypeptide chains within cells, folding intermediates aggregation and competing off-pathway reactions, and the unfolding and refolding of proteins in vitro. Additional topics covered are the role of helper proteins such as chaperonins and isomerases, protein recovery problems in the biotechnology industry, and diseases found associated with protein folding defects. This course focuses on the mechanisms by which the amino acid sequence of polypeptide chains (proteins), determine their three-dimensional conformation. Topics in this course include sequence determinants of secondary structure, the folding of newly synthesized polypeptide chains within cells, folding intermediates aggregation and competing off-pathway reactions, and the unfolding and refolding of proteins in vitro. Additional topics covered are the role of helper proteins such as chaperonins and isomerases, protein recovery problems in the biotechnology industry, and diseases found associated with protein folding defects.

Subjects

amino acid sequence | amino acid sequence | polypeptide chains | polypeptide chains | sequence determinants | sequence determinants | folding | folding | synthesized polypeptide chains within cells | synthesized polypeptide chains within cells | unfolding and refolding of proteins in vitro | unfolding and refolding of proteins in vitro | folding intermediates aggregation | folding intermediates aggregation | competing off-pathway reactions | competing off-pathway reactions | chaperonins | chaperonins | isomerases | isomerases | helper proteins | helper proteins | protein recovery problems | protein recovery problems | biotechnology industry | biotechnology industry | protein folding defects | protein folding defects | 3-D conformation | 3-D conformation | globular proteins | globular proteins | fibrous proteins | fibrous proteins | kinetics | kinetics | in vitro refolding | in vitro refolding | pathways | pathways | in vivo folding | in vivo folding | synthesized proteins | synthesized proteins | aggregation | aggregation | protein misfolding | protein misfolding | human disease | human disease | protein folding | protein folding | genome sequences | genome sequences | 7.88 | 7.88 | 5.48 | 5.48 | 7.24 | 7.24 | 10.543 | 10.543

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.462J Molecular Principles of Biomaterials (MIT) BE.462J Molecular Principles of Biomaterials (MIT)

Description

Analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, biosensors, and cell-guiding surfaces.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark or trademark of Microsoft Corporation in the U.S Analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, biosensors, and cell-guiding surfaces.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark or trademark of Microsoft Corporation in the U.S

Subjects

Analysis | Analysis | design | design | molecular scale | molecular scale | biological systems | biological systems | biotechnology | biotechnology | biomedical engineering | biomedical engineering | molecular interactions | molecular interactions | synthetic molecules | synthetic molecules | synthesis | synthesis | processing approaches | processing approaches | cell functions | cell functions | materials science | materials science | tissue engineering | tissue engineering | drug delivery | drug delivery | biosensors | biosensors | cell-guiding surfaces | cell-guiding surfaces | 3.962J | 3.962J | BE.462 | BE.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (BE.462J) (MIT) 20.462J Molecular Principles of Biomaterials (BE.462J) (MIT)

Description

Analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, biosensors, and cell-guiding surfaces.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark or trademark of Microsoft Corporation in the U.S Analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, biosensors, and cell-guiding surfaces.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark or trademark of Microsoft Corporation in the U.S

Subjects

Analysis | Analysis | design | design | molecular scale | molecular scale | biological systems | biological systems | biotechnology | biotechnology | biomedical engineering | biomedical engineering | molecular interactions | molecular interactions | synthetic molecules | synthetic molecules | synthesis | synthesis | processing approaches | processing approaches | cell functions | cell functions | materials science | materials science | tissue engineering | tissue engineering | drug delivery | drug delivery | biosensors | biosensors | cell-guiding surfaces | cell-guiding surfaces | BE.462J | BE.462J | BE.462 | BE.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.508 Genomics and Computational Biology (MIT) HST.508 Genomics and Computational Biology (MIT)

Description

Includes audio/video content: AV lectures. This course will assess the relationships among sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive, functional genomics analyses. Exercises will include algorithmic, statistical, database, and simulation approaches and practical applications to medicine, biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations will be critically addressed. In addition to the regular lecture sessions, supplementary sections are scheduled to address issues related to Perl, Mathematica and biology. Includes audio/video content: AV lectures. This course will assess the relationships among sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive, functional genomics analyses. Exercises will include algorithmic, statistical, database, and simulation approaches and practical applications to medicine, biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations will be critically addressed. In addition to the regular lecture sessions, supplementary sections are scheduled to address issues related to Perl, Mathematica and biology.

Subjects

sequence | sequence | structure | structure | function | function | complex biological networks | complex biological networks | quantative modeling | quantative modeling | functional genomics analyses | functional genomics analyses | algorithms | algorithms | statistics | statistics | database | database | simulation | simulation | applied medicine | applied medicine | biotechnology | biotechnology | drug discovery | drug discovery | computational biology | computational biology | genetic engineering | genetic engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.092 Bioinformatics and Proteomics (MIT) 6.092 Bioinformatics and Proteomics (MIT)

Description

This interdisciplinary course provides a hands-on approach to students in the topics of bioinformatics and proteomics. Lectures and labs cover sequence analysis, microarray expression analysis, Bayesian methods, control theory, scale-free networks, and biotechnology applications. Designed for those with a computational and/or engineering background, it will include current real-world examples, actual implementations, and engineering design issues. Where applicable, engineering issues from signal processing, network theory, machine learning, robotics and other domains will be expounded upon. This interdisciplinary course provides a hands-on approach to students in the topics of bioinformatics and proteomics. Lectures and labs cover sequence analysis, microarray expression analysis, Bayesian methods, control theory, scale-free networks, and biotechnology applications. Designed for those with a computational and/or engineering background, it will include current real-world examples, actual implementations, and engineering design issues. Where applicable, engineering issues from signal processing, network theory, machine learning, robotics and other domains will be expounded upon.

Subjects

bioinformatics | bioinformatics | proteomics | proteomics | sequence analysis | sequence analysis | microarray expression analysis | microarray expression analysis | Bayesian methods | Bayesian methods | control theory | control theory | scale-free networks | scale-free networks | biotechnology applications | biotechnology applications | real-world examples | real-world examples | actual implementations | actual implementations | engineering design issues | engineering design issues | signal processing | signal processing | network theory | network theory | machine learning | machine learning | robotics | robotics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.A12 Freshman Seminar: Structural Basis of Genetic Material: Nucleic Acids (MIT) 7.A12 Freshman Seminar: Structural Basis of Genetic Material: Nucleic Acids (MIT)

Description

Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials. Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials.

Subjects

nucleic acids | nucleic acids | DNA | DNA | RNA | RNA | genetics | genetics | genes | genes | genetic material | genetic material | double helix | double helix | molecular biology | molecular biology | biotechnology | biotechnology | structure | structure | function | function | heredity | heredity | complementarity | complementarity | biological materials | biological materials | genetic code | genetic code | oligonucleotides | oligonucleotides | supercoiled DNA | supercoiled DNA | polyribosome | polyribosome | tRNA | tRNA | reverse transcription | reverse transcription | central dogma | central dogma | transcription | transcription

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (MIT) 20.462J Molecular Principles of Biomaterials (MIT)

Description

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces. This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subjects

biomaterials | biomaterials | biomaterial engineering | biomaterial engineering | biotechnology | biotechnology | cell-guiding surface | cell-guiding surface | molecular biomaterials | molecular biomaterials | drug release | drug release | polymers | polymers | pulsatile release | pulsatile release | polymerization | polymerization | polyer erosion | polyer erosion | tissue engineering | tissue engineering | hydrogels | hydrogels | adhesion | adhesion | migration | migration | drug diffusion | drug diffusion | molecular switches | molecular switches | molecular motors | molecular motors | nanoparticles | nanoparticles | microparticles | microparticles | vaccines | vaccines | drug targeting | drug targeting | micro carriers | micro carriers | nano carriers | nano carriers | intracellular drug delivery | intracellular drug delivery | 20.462 | 20.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Biomolecular Kinetics and Cell Dynamics (MIT) 20.320 Biomolecular Kinetics and Cell Dynamics (MIT)

Description

This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling. This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

kinetics of molecular processes | kinetics of molecular processes | dynamics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | kinetics of cellular processes | dynamics of cellular processes | dynamics of cellular processes | intracellular scale | intracellular scale | extracellular scale | extracellular scale | and cell population scale | and cell population scale | biotechnology applications | biotechnology applications | gene regulation networks | gene regulation networks | nucleic acid hybridization | nucleic acid hybridization | signal transduction pathways | signal transduction pathways | cell populations in tissues | cell populations in tissues | cell populations in bioreactors | cell populations in bioreactors | experimental methods | experimental methods | quantitative analysis | quantitative analysis | computational modeling | computational modeling | cell population scale | cell population scale

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Biotechnology

Description

This course will introduce the student to the major concepts of biotechnology. The student will discuss genetic engineering of plants and animals and the current major medical, environmental, and agricultural applications of each. There are also a variety of topics that this course will cover after ranging from nanobiotechnology to environmental biotechnology. This free course may be completed online at any time. See course site for detailed overview and learning outcomes. (Biology 403)

Subjects

biology | biotechnology | technology | genes | engineering | genetically modified | genetics | forensics | dna | genomics | proteomics | defects | therapy | renewable energy | environmental | immunology | stem cell | Biological sciences | C000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Virtual Global Health: Computational Modeling and Simulation

Description

Recorded April 29, 2013. Bruce Y. Lee, MD, MBA is Associate Professor of Medicine and Biomedical Informatics at the University of Pittsburgh and Core Faculty for the RAND-University of Pittsburgh Health Institute. At the University of Pittsburgh, he founded and directs the Public Health and Infectious Diseases Computational and Operations Research (PHICOR) group that specializes in designing economic, and operational computer models that help decision makers tackle infectious diseases of global importance. He is the Scientific Lead for the HERMES Project and the RHEA Project. His current funding includes grants from the Bill and Melinda Gates Foundation, the National Institutes of Health (NIH), Centers for Disease Control and Prevention (CDC), National Science Foundation (NSF), National Library of Medicine (NLM), and the Pennsylvania Department of Health. His previous positions include serving as Senior Manager at Quintiles Transnational where he led teams that developed economic and operational models for a variety of clients in the pharmaceutical, biotechnology, and medical device industries, working in biotechnology equity research at Montgomery Securities, and co-founding Integrigen, a biotechnology/bioinformatics company. Dr. Lee has authored over 150 scientific publications (including over 80 first author and over 35 last author) as well as three books: "Principles and Practice of Clinical Trial Medicine", "What If... ? : Survival Guide for Physicians, and "Medical Notes : Clinical Medicine Pocket Guide". Dr. Lee is an Associate Editor for Vaccine and Area Editor for Wiley Series on Modeling and Simulation. He and his work have garnered attention in leading media outlets such as the New York Times, Los Angeles Times, Businessweek, U.S. News and World Report, Nature Medicine, and National Public Radio (NPR). Dr. Lee received his B.A. from Harvard University, M.D. from Harvard Medical School, and M.B.A. from the Stanford Graduate School of Business. He is board-certified in Internal Medicine, having completed his residency training at the University of California, San Diego.

Subjects

License

http://creativecommons.org/licenses/by-sa/3.0/

Site sourced from

http://www.youtube.com/user/UCIrvineOCW

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.391 Early Stage Capital (MIT) 15.391 Early Stage Capital (MIT)

Description

15.391 examines the elements of raising early stage capital, focusing on start-up ventures and the early stages of company development. This course also prepares entrepreneurs to make the best use of outside advisors, and to negotiate effective long-term relationships with funding sources. Working in teams, students interact with venture capitalists and other professionals throughout the semester. Disclaimer: The web sites for this course and the materials they offer are provided for educational use only. They are not a substitute for the advice of an attorney and no attorney-client relationship is created by using them. All materials are provided "as-is", without any express or implied warranties. 15.391 examines the elements of raising early stage capital, focusing on start-up ventures and the early stages of company development. This course also prepares entrepreneurs to make the best use of outside advisors, and to negotiate effective long-term relationships with funding sources. Working in teams, students interact with venture capitalists and other professionals throughout the semester. Disclaimer: The web sites for this course and the materials they offer are provided for educational use only. They are not a substitute for the advice of an attorney and no attorney-client relationship is created by using them. All materials are provided "as-is", without any express or implied warranties.

Subjects

raising venture capital | raising venture capital | starting business | starting business | structuring deals | structuring deals | valuating companies | valuating companies | entrepreneurship | entrepreneurship | venture capitalist | venture capitalist | finding early stage capital | finding early stage capital | negotiate investments | negotiate investments | new business laws | new business laws | financial simulations | financial simulations | build relationships | build relationships | start-up ventures | start-up ventures | company development | company development | using outside advisors | using outside advisors | funding sources | funding sources | term sheet | term sheet | VC | VC | entrepreneur | entrepreneur | pursuing seed money | pursuing seed money | biotechnology | biotechnology | biotech | biotech | angel financing | angel financing | first round money | first round money

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.950J Engineering Biomedical Information: From Bioinformatics to Biosurveillance (MIT) HST.950J Engineering Biomedical Information: From Bioinformatics to Biosurveillance (MIT)

Description

This course provides an interdisciplinary introduction to the technological advances in biomedical informatics and their applications at the intersection of computer science and biomedical research. This course provides an interdisciplinary introduction to the technological advances in biomedical informatics and their applications at the intersection of computer science and biomedical research.

Subjects

biomedical informatics | biomedical informatics | bioinformatics | bioinformatics | biomedical research | biomedical research | biological computing | biological computing | biomedical computing | biomedical computing | computational genomics | computational genomics | genomics | genomics | microarrays | microarrays | proteomics | proteomics | pharmacogenomics | pharmacogenomics | genomic privacy | genomic privacy | clinical informatics | clinical informatics | biosurveillance | biosurveillance | privacy | privacy | biotechnology | biotechnology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.442 Molecular Structure of Biological Materials (MIT) BE.442 Molecular Structure of Biological Materials (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | protein | hydration | hydration | amino acid | amino acid | ECM | ECM | extracellular matrix | extracellular matrix | peptide | peptide | helix | helix | DNA | DNA | RNA | RNA | biomaterial | biomaterial | biotech | biotech | biotechnology | biotechnology | nanomaterial | nanomaterial | beta-sheet | beta-sheet | beta sheet | beta sheet | molecular structure | molecular structure | bioengineering | bioengineering | silk | silk | biomimetic | biomimetic | self-assembly | self-assembly | keratin | keratin | collagen | collagen | adhesive | adhesive | GFP | GFP | fluorescent | fluorescent | polymer | polymer | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.01SC Fundamentals of Biology (MIT) 7.01SC Fundamentals of Biology (MIT)

Description

Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality. Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.

Subjects

amino acids | amino acids | carboxyl group | carboxyl group | amino group | amino group | side chains | side chains | polar | polar | hydrophobic | hydrophobic | primary structure | primary structure | secondary structure | secondary structure | tertiary structure | tertiary structure | quaternary structure | quaternary structure | x-ray crystallography | x-ray crystallography | alpha helix | alpha helix | beta sheet | beta sheet | ionic bond | ionic bond | non-polar bond | non-polar bond | van der Waals interactions | van der Waals interactions | proton gradient | proton gradient | cyclic photophosphorylation | cyclic photophosphorylation | sunlight | sunlight | ATP | ATP | chlorophyll | chlorophyll | chlorophyll a | chlorophyll a | electrons | electrons | hydrogen sulfide | hydrogen sulfide | biosynthesis | biosynthesis | non-cyclic photophosphorylation | non-cyclic photophosphorylation | photosystem II | photosystem II | photosystem I | photosystem I | cyanobacteria | cyanobacteria | chloroplast | chloroplast | stroma | stroma | thylakoid membrane | thylakoid membrane | Genetics | Genetics | Mendel | Mendel | Mendel's Laws | Mendel's Laws | cloning | cloning | restriction enzymes | restriction enzymes | vector | vector | insert DNA | insert DNA | ligase | ligase | library | library | E.Coli | E.Coli | phosphatase | phosphatase | yeast | yeast | transformation | transformation | ARG1 gene | ARG1 gene | ARG1 mutant yeast | ARG1 mutant yeast | yeast wild-type | yeast wild-type | cloning by complementation | cloning by complementation | Human Beta Globin gene | Human Beta Globin gene | protein tetramer | protein tetramer | vectors | vectors | antibodies | antibodies | human promoter | human promoter | splicing | splicing | mRNA | mRNA | cDNA | cDNA | reverse transcriptase | reverse transcriptase | plasmid | plasmid | electrophoresis | electrophoresis | DNA sequencing | DNA sequencing | primer | primer | template | template | capillary tube | capillary tube | laser detector | laser detector | human genome project | human genome project | recombinant DNA | recombinant DNA | clone | clone | primer walking | primer walking | subcloning | subcloning | computer assembly | computer assembly | shotgun sequencing | shotgun sequencing | open reading frame | open reading frame | databases | databases | polymerase chain reaction (PCR) | polymerase chain reaction (PCR) | polymerase | polymerase | nucleotides | nucleotides | Thermus aquaticus | Thermus aquaticus | Taq polymerase | Taq polymerase | thermocycler | thermocycler | resequencing | resequencing | in vitro fertilization | in vitro fertilization | pre-implantation diagnostics | pre-implantation diagnostics | forensics | forensics | genetic engineering | genetic engineering | DNA sequences | DNA sequences | therapeutic proteins | therapeutic proteins | E. coli | E. coli | disease-causing mutations | disease-causing mutations | cleavage of DNA | cleavage of DNA | bacterial transformation | bacterial transformation | recombinant DNA revolution | recombinant DNA revolution | biotechnology industry | biotechnology industry | Robert Swanson | Robert Swanson | toxin gene | toxin gene | pathogenic bacterium | pathogenic bacterium | biomedical research | biomedical research | S. Pyogenes | S. Pyogenes | origin of replication | origin of replication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.109 Laboratory Fundamentals in Biological Engineering (MIT) 20.109 Laboratory Fundamentals in Biological Engineering (MIT)

Description

Includes audio/video content: AV special element video. This course introduces experimental biochemical and molecular techniques from a quantitative engineering perspective. Experimental design, data analysis, and scientific communication form the underpinnings of this subject. Three discovery-based experimental modules focus on RNA engineering, protein engineering, and cell-biomaterial engineering.This OCW site is based on the source OpenWetWare class Wiki, 20.109(S10): Laboratory Fundamentals of Biological Engineering. Includes audio/video content: AV special element video. This course introduces experimental biochemical and molecular techniques from a quantitative engineering perspective. Experimental design, data analysis, and scientific communication form the underpinnings of this subject. Three discovery-based experimental modules focus on RNA engineering, protein engineering, and cell-biomaterial engineering.This OCW site is based on the source OpenWetWare class Wiki, 20.109(S10): Laboratory Fundamentals of Biological Engineering.

Subjects

biology | biology | bioengineering | bioengineering | biotechnology | biotechnology | RNA engineering | RNA engineering | protein engineering | protein engineering | biomaterial engineering | biomaterial engineering | assay | assay | lab protocol | lab protocol

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.011 American Science: Ethical Conflicts and Political Choices (MIT) STS.011 American Science: Ethical Conflicts and Political Choices (MIT)

Description

Includes audio/video content: AV special element video. We will explore the changing political choices and ethical dilemmas of American scientists from the atomic scientists of World War II to biologists in the present wrestling with the questions raised by cloning and other biotechnologies. As well as asking how we would behave if confronted with the same choices, we will try to understand the choices scientists have made by seeing them in their historical and political contexts. Some of the topics covered include: the original development of nuclear weapons and the bombing of Hiroshima and Nagasaki; the effects of the Cold War on American science; the space shuttle disasters; debates on the use of nuclear power, wind power, and biofuels; abuse of human subjects in psychological and othe Includes audio/video content: AV special element video. We will explore the changing political choices and ethical dilemmas of American scientists from the atomic scientists of World War II to biologists in the present wrestling with the questions raised by cloning and other biotechnologies. As well as asking how we would behave if confronted with the same choices, we will try to understand the choices scientists have made by seeing them in their historical and political contexts. Some of the topics covered include: the original development of nuclear weapons and the bombing of Hiroshima and Nagasaki; the effects of the Cold War on American science; the space shuttle disasters; debates on the use of nuclear power, wind power, and biofuels; abuse of human subjects in psychological and othe

Subjects

risk | risk | science | science | society | society | ethics | ethics | politics | politics | technology | technology | history | history | controversy | controversy | atomic | atomic | whistleblowing | whistleblowing | GMO | GMO | genetic engineering | genetic engineering | nuclear | nuclear | space exploration | space exploration | energy | energy | policy | policy | debate | debate | museum | museum | archeology | archeology | war | war | terrorism | terrorism | tradeoff | tradeoff | decision making | decision making | medicine | medicine | health care policy | health care policy | biotechnology | biotechnology | climate change | climate change | global warming | global warming | human subjects | human subjects

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.931 Development of Inventions and Creative Ideas (MIT) 6.931 Development of Inventions and Creative Ideas (MIT)

Description

This course examines the role of the engineer as patent expert and as technical witness in court and patent interference and related proceedings. It discusses the rights and obligations of engineers in connection with educational institutions, government, and large and small businesses. It compares various manners of transplanting inventions into business operations, including development of New England and other U.S. electronics and biotechnology industries and their different types of institutions. The course also considers American systems of incentive to creativity apart from the patent laws in the atomic energy and space fields. Acknowledgment The instructors would like to thank Joanne Rines and Elijah Ercolino for their efforts in preparing this course. This course examines the role of the engineer as patent expert and as technical witness in court and patent interference and related proceedings. It discusses the rights and obligations of engineers in connection with educational institutions, government, and large and small businesses. It compares various manners of transplanting inventions into business operations, including development of New England and other U.S. electronics and biotechnology industries and their different types of institutions. The course also considers American systems of incentive to creativity apart from the patent laws in the atomic energy and space fields. Acknowledgment The instructors would like to thank Joanne Rines and Elijah Ercolino for their efforts in preparing this course.

Subjects

patents | patents | inventions | inventions | United States | United States | Alexander Graham Bell | Alexander Graham Bell | telephone patent | telephone patent | innovation | innovation | inventors | inventors | rights | rights | law | law | courts | courts | modernization | modernization | ideas | ideas | creativity | creativity | original | original | American Telephone and Telegraph Company | American Telephone and Telegraph Company | Congress | Congress | Constitution | Constitution | Patent Act | Patent Act | Thomas Edison | Thomas Edison

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.346 Virus-host Interactions in Infectious Diseases (MIT) 7.346 Virus-host Interactions in Infectious Diseases (MIT)

Description

Co-evolution and adaptation between viruses and humans are often portrayed as a zero-sum biological arms race. Viruses enter host cells equipped with an array of mechanisms to evade the host defense responses and replicate. The rapid rate of mutation of viruses permits evolution of various methodologies for infection, which in turn drive development of non-specific but highly effective host mechanisms to restrict infection. This class will discuss the varied solutions each side has developed as a means for survival. We will use examples drawn from human disease-causing pathogens that contribute seriously to the global health burden, including HIV, influenza and dengue virus. Primary research papers will be discussed to help students learn to pose scientific questions and design and conduct Co-evolution and adaptation between viruses and humans are often portrayed as a zero-sum biological arms race. Viruses enter host cells equipped with an array of mechanisms to evade the host defense responses and replicate. The rapid rate of mutation of viruses permits evolution of various methodologies for infection, which in turn drive development of non-specific but highly effective host mechanisms to restrict infection. This class will discuss the varied solutions each side has developed as a means for survival. We will use examples drawn from human disease-causing pathogens that contribute seriously to the global health burden, including HIV, influenza and dengue virus. Primary research papers will be discussed to help students learn to pose scientific questions and design and conduct

Subjects

virus | virus | host | host | infection | infection | protein-protein interactions | protein-protein interactions | host mimicry | host mimicry | intra-cellular trafficking | intra-cellular trafficking | host-cell machinery | host-cell machinery | signaling pathways | signaling pathways | antiviral proteins | antiviral proteins | HIV | HIV | influenza | influenza | dengue virus | dengue virus | biotechnology | biotechnology | vaccine development | vaccine development | host sensors | host sensors | IFN production | IFN production | Secreted IFN | Secreted IFN | filoviruses | filoviruses | hCMV | hCMV | IFITM proteins | IFITM proteins

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.341 Harnessing the Biosphere: Natural Products and Biotechnology (MIT) 7.341 Harnessing the Biosphere: Natural Products and Biotechnology (MIT)

Description

What do the organisms of the biosphere, specifically microorganisms, have to offer to biotechnological endeavors? In this course we will focus on the production of biomolecules using microbial systems. We will discuss potential growth substrates (such as agricultural waste and carbon dioxide) that can be used and learn about both established and cutting-edge manipulation techniques in the field of synthetic biology. We will also cover the production of biofuels, bioplastics, amino acids (e.g. lysine), food additives (e.g. monosodium glutamate, MSG), specialty chemicals (e.g. succinate), and biopharmaceuticals (e.g. plasmids for gene therapy). This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an What do the organisms of the biosphere, specifically microorganisms, have to offer to biotechnological endeavors? In this course we will focus on the production of biomolecules using microbial systems. We will discuss potential growth substrates (such as agricultural waste and carbon dioxide) that can be used and learn about both established and cutting-edge manipulation techniques in the field of synthetic biology. We will also cover the production of biofuels, bioplastics, amino acids (e.g. lysine), food additives (e.g. monosodium glutamate, MSG), specialty chemicals (e.g. succinate), and biopharmaceuticals (e.g. plasmids for gene therapy). This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an

Subjects

microorganisms | microorganisms | biomolecules | biomolecules | microbial systems | microbial systems | synthetic biology | synthetic biology | biofuels | biofuels | bioplastics | bioplastics | amino acids | amino acids | lysine | lysine | food additives | food additives | monosodium glutamate (MSG) | monosodium glutamate (MSG) | specialty chemicals | specialty chemicals | succinate | succinate | biopharmaceuticals | biopharmaceuticals | enzymes | enzymes | antibiotics and biocompatible materials | antibiotics and biocompatible materials | microbial biotechnology | microbial biotechnology | genetic engineering | genetic engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.346 RNAi: A Revolution in Biology and Therapeutics (MIT) 7.346 RNAi: A Revolution in Biology and Therapeutics (MIT)

Description

Despite centuries of effort, modern medicine still struggles to find the source of disease and to provide specific treatment without side effects. Both traditional small molecules and protein-based therapeutics have achieved only limited success. What is the next therapeutic frontier? The answer may be RNA interference. In this course, we will focus on the therapeutic potential of RNAi. We will discuss its discovery functions in normal biological processes, utility as an experimental tool, potential for therapeutic use, and pursuit by the biotechnology industry. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current Despite centuries of effort, modern medicine still struggles to find the source of disease and to provide specific treatment without side effects. Both traditional small molecules and protein-based therapeutics have achieved only limited success. What is the next therapeutic frontier? The answer may be RNA interference. In this course, we will focus on the therapeutic potential of RNAi. We will discuss its discovery functions in normal biological processes, utility as an experimental tool, potential for therapeutic use, and pursuit by the biotechnology industry. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current

Subjects

RNAi | RNAi | RNA interface | RNA interface | therapeutics | therapeutics | siRNA | siRNA | miRNA | miRNA | shRNA | shRNA

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.88J Protein Folding Problem (MIT) 7.88J Protein Folding Problem (MIT)

Description

This course focuses on the mechanisms by which the amino acid sequence of polypeptide chains (proteins), determine their three-dimensional conformation. Topics in this course include sequence determinants of secondary structure, the folding of newly synthesized polypeptide chains within cells, folding intermediates aggregation and competing off-pathway reactions, and the unfolding and refolding of proteins in vitro. Additional topics covered are the role of helper proteins such as chaperonins and isomerases, protein recovery problems in the biotechnology industry, and diseases found associated with protein folding defects. This course focuses on the mechanisms by which the amino acid sequence of polypeptide chains (proteins), determine their three-dimensional conformation. Topics in this course include sequence determinants of secondary structure, the folding of newly synthesized polypeptide chains within cells, folding intermediates aggregation and competing off-pathway reactions, and the unfolding and refolding of proteins in vitro. Additional topics covered are the role of helper proteins such as chaperonins and isomerases, protein recovery problems in the biotechnology industry, and diseases found associated with protein folding defects.

Subjects

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.380J Biological Engineering Design (MIT) 20.380J Biological Engineering Design (MIT)

Description

This course illustrates how knowledge and principles of biology, biochemistry, and engineering are integrated to create new products for societal benefit. It uses a case study format to examine recently developed products of pharmaceutical and biotechnology industries: how a product evolves from initial idea, through patents, testing, evaluation, production, and marketing. Emphasizes scientific and engineering principles; the responsibility scientists, engineers, and business executives have for the consequences of their technology; and instruction and practice in written and oral communication. The topic focus of this class will vary from year to year. This version looks at inflammation underlying many diseases, specifically its role in cancer, diabetes, and cardiovascular disease. This course illustrates how knowledge and principles of biology, biochemistry, and engineering are integrated to create new products for societal benefit. It uses a case study format to examine recently developed products of pharmaceutical and biotechnology industries: how a product evolves from initial idea, through patents, testing, evaluation, production, and marketing. Emphasizes scientific and engineering principles; the responsibility scientists, engineers, and business executives have for the consequences of their technology; and instruction and practice in written and oral communication. The topic focus of this class will vary from year to year. This version looks at inflammation underlying many diseases, specifically its role in cancer, diabetes, and cardiovascular disease.

Subjects

inflammation | inflammation | biomedical engineering | biomedical engineering | cancer | cancer | diabetes | diabetes | obesity | obesity | cardiovascular disease | cardiovascular disease | biomedical entrepreneurship | biomedical entrepreneurship | biomedical startup | biomedical startup

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Biomolecular Kinetics and Cell Dynamics (MIT)

Description

This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

kinetics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | dynamics of cellular processes | intracellular scale | extracellular scale | and cell population scale | biotechnology applications | gene regulation networks | nucleic acid hybridization | signal transduction pathways | cell populations in tissues | cell populations in bioreactors | experimental methods | quantitative analysis | computational modeling | cell population scale

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.442 Molecular Structure of Biological Materials (BE.442) (MIT) 20.442 Molecular Structure of Biological Materials (BE.442) (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | protein | hydration | hydration | amino acid | amino acid | ECM | ECM | extracellular matrix | extracellular matrix | peptide | peptide | helix | helix | DNA | DNA | RNA | RNA | biomaterial | biomaterial | biotech | biotech | biotechnology | biotechnology | nanomaterial | nanomaterial | beta-sheet | beta-sheet | beta sheet | beta sheet | molecular structure | molecular structure | bioengineering | bioengineering | silk | silk | biomimetic | biomimetic | self-assembly | self-assembly | keratin | keratin | collagen | collagen | adhesive | adhesive | GFP | GFP | fluorescent | fluorescent | polymer | polymer | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.510 Genomics, Computing, Economics, and Society (MIT) HST.510 Genomics, Computing, Economics, and Society (MIT)

Description

This course will focus on understanding aspects of modern technology displaying exponential growth curves and the impact on global quality of life through a weekly updated class project integrating knowledge and providing practical tools for political and business decision-making concerning new aspects of bioengineering, personalized medicine, genetically modified organisms, and stem cells. Interplays of economic, ethical, ecological, and biophysical modeling will be explored through multi-disciplinary teams of students, and individual brief reports. This course will focus on understanding aspects of modern technology displaying exponential growth curves and the impact on global quality of life through a weekly updated class project integrating knowledge and providing practical tools for political and business decision-making concerning new aspects of bioengineering, personalized medicine, genetically modified organisms, and stem cells. Interplays of economic, ethical, ecological, and biophysical modeling will be explored through multi-disciplinary teams of students, and individual brief reports.

Subjects

genomics | genomics | bioengineering | bioengineering | biological engineering | biological engineering | personalized medicine | personalized medicine | informatics | informatics | bioinformatics | bioinformatics | human genome | human genome | stem cells | stem cells | genetically modified organisms | genetically modified organisms | biophysics | biophysics | bioethics | bioethics | society | society | bioeconomics | bioeconomics | statistics | statistics | modeling | modeling | datamining | datamining | systems biology | systems biology | technology development | technology development | biotechnology | biotechnology | public policy | public policy | health policy | health policy | business | business | economics | economics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata