Searching for electron : 48205 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928

6.701 Introduction to Nanoelectronics (MIT) 6.701 Introduction to Nanoelectronics (MIT)

Description

Traditionally, progress in electronics has been driven by miniaturization. But as electronic devices approach the molecular scale, classical models for device behavior must be abandoned. To prepare for the next generation of electronic devices, this class teaches the theory of current, voltage and resistance from atoms up. To describe electrons at the nanoscale, we will begin with an introduction to the principles of quantum mechanics, including quantization, the wave-particle duality, wavefunctions and Schrödinger's equation. Then we will consider the electronic properties of molecules, carbon nanotubes and crystals, including energy band formation and the origin of metals, insulators and semiconductors. Electron conduction will be taught beginning with ballistic transport and concludin Traditionally, progress in electronics has been driven by miniaturization. But as electronic devices approach the molecular scale, classical models for device behavior must be abandoned. To prepare for the next generation of electronic devices, this class teaches the theory of current, voltage and resistance from atoms up. To describe electrons at the nanoscale, we will begin with an introduction to the principles of quantum mechanics, including quantization, the wave-particle duality, wavefunctions and Schrödinger's equation. Then we will consider the electronic properties of molecules, carbon nanotubes and crystals, including energy band formation and the origin of metals, insulators and semiconductors. Electron conduction will be taught beginning with ballistic transport and concludin

Subjects

nanoelectronics | nanoelectronics | quantum mechanics | quantum mechanics | wave-particle duality | wave-particle duality | Schrodinger's equation | Schrodinger's equation | electronic properties of molecules | electronic properties of molecules | energy band formation | energy band formation | electron conduction | electron conduction | ballistic transport | ballistic transport | Ohm's law | Ohm's law | fundamental limits to computation | fundamental limits to computation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT) 6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment. 6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | network | computer security | computer security | security | security | cryptography | cryptography | secret-key | secret-key | public-key | public-key | digital signature | digital signature | authentication | authentication | identification | identification | intrusion detection | intrusion detection | virus | virus | operating system | operating system | software | software | protection | protection | electronic mail | electronic mail | email | email | electronic commerce | electronic commerce | electronic cash | electronic cash | firewall | firewall | computer | computer | digital | digital | signature | signature | electronic | electronic | cash | cash | commerce | commerce | mail | mail | operating | operating | system | system | intrustion | intrustion | detection | detection | distributed | distributed | physical | physical | discretionary | discretionary | mandatory | mandatory | access | access | control | control | biometrics | biometrics | information | information | flow | flow | models | models | covert | covert | channels | channels | integrity | integrity | logic | logic | voting | voting | risk | risk | assessment | assessment | secure | secure | web | web | browsers | browsers | architecture | architecture | engineering | engineering | certificates | certificates | multi-user computer systems | multi-user computer systems | distributed computer systems | distributed computer systems | physical security | physical security | discretionary access control | discretionary access control | mandatory access control | mandatory access control | information-flow models | information-flow models | covert channels | covert channels | integrity models | integrity models | elementary cryptography | elementary cryptography | authentication logic;electronic cash | authentication logic;electronic cash | viruses | viruses | firewalls | firewalls | electronic voting | electronic voting | risk assessment | risk assessment | secure web browsers | secure web browsers | network security | network security | architecture engineering | architecture engineering | digital signatures | digital signatures | authentication schemes | authentication schemes | identification schemes | identification schemes | formal models | formal models | secure operating systems | secure operating systems | software protection | software protection | electronic mail security | electronic mail security | World Wide Web | World Wide Web | ecommerce | ecommerce | email security | email security | www | www | payment protocols | payment protocols | authentication logic | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.012 Fundamentals of Materials Science (MIT) 3.012 Fundamentals of Materials Science (MIT)

Description

This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and stability of materials. Quantum mechanical descriptions of interacting electrons and atoms. Symmetry properties of molecules and solids. Structure of complex and disordered materials. Introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to molecular models of materials. Develops basis for understanding a broad range of materials phenomena, from heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism. Fundamentals are taught using real-world examples such as engineered all This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and stability of materials. Quantum mechanical descriptions of interacting electrons and atoms. Symmetry properties of molecules and solids. Structure of complex and disordered materials. Introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to molecular models of materials. Develops basis for understanding a broad range of materials phenomena, from heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism. Fundamentals are taught using real-world examples such as engineered all

Subjects

fundamentals of bonding | energetics | and structure | fundamentals of bonding | energetics | and structure | Quantum mechanical descriptions of interacting electrons and atoms | Quantum mechanical descriptions of interacting electrons and atoms | Symmetry properties of molecules and solids | Symmetry properties of molecules and solids | complex and disordered materials | complex and disordered materials | thermodynamic functions | thermodynamic functions | equilibrium properties | equilibrium properties | macroscopic behavior | macroscopic behavior | molecular models | molecular models | heat capacities | heat capacities | phase transformations | phase transformations | multiphase equilibria | multiphase equilibria | chemical reactions | chemical reactions | magnetism | magnetism | engineered alloys | engineered alloys | electronic and magnetic materials | electronic and magnetic materials | ionic and network solids | ionic and network solids | polymers | polymers | biomaterials | biomaterials | energetics | energetics | structure | structure | materials science | materials science | electrons | electrons | silicon | silicon | DNA | DNA | electronic bonding | electronic bonding | energy | energy | stability | stability | quantum mechanics | quantum mechanics | atoms | atoms | interactions | interactions | symmetry | symmetry | molecules | molecules | solids | solids | complex material | complex material | disorderd materials | disorderd materials | thermodynamic laws | thermodynamic laws | electronic materials | electronic materials | magnetic materials | magnetic materials | ionic solids | ionic solids | network solids | network solids | statistical mechanics | statistical mechanics | microstates | microstates | microscopic complexity | microscopic complexity | entropy | entropy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.091 Hands-On Introduction to Electrical Engineering Lab Skills (MIT) 6.091 Hands-On Introduction to Electrical Engineering Lab Skills (MIT)

Description

This course introduces students to both passive and active electronic components (op-amps, 555 timers, TTL digital circuits). Basic analog and digital circuits and theory of operation are covered. The labs allow the students to master the use of electronic instruments and construct and/or solder several circuits. The labs also reinforce the concepts discussed in class with a hands-on approach and allow the students to gain significant experience with electrical instruments such as function generators, digital multimeters, oscilloscopes, logic analyzers and power supplies. In the last lab, the students build an electronic circuit that they can keep. The course is geared to freshmen and others who want an introduction to electronics circuits. This course is offered during the Independent Ac This course introduces students to both passive and active electronic components (op-amps, 555 timers, TTL digital circuits). Basic analog and digital circuits and theory of operation are covered. The labs allow the students to master the use of electronic instruments and construct and/or solder several circuits. The labs also reinforce the concepts discussed in class with a hands-on approach and allow the students to gain significant experience with electrical instruments such as function generators, digital multimeters, oscilloscopes, logic analyzers and power supplies. In the last lab, the students build an electronic circuit that they can keep. The course is geared to freshmen and others who want an introduction to electronics circuits. This course is offered during the Independent Ac

Subjects

electronic components | electronic components | passive electronic components | passive electronic components | active electronic components | active electronic components | analog | analog | digital | digital | soldering | soldering | op-amps | op-amps | timers | timers | digital circuits | digital circuits | function generators | function generators | multimeters | multimeters | oscilloscopes | oscilloscopes | logic analyzers | logic analyzers | introduction to electronics | introduction to electronics | debugging | debugging | integrated circuits | integrated circuits | digital design | digital design | analog to digital | analog to digital | digital to analog | digital to analog

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.141 Electron Microprobe Analysis (MIT) 12.141 Electron Microprobe Analysis (MIT)

Description

The electron microprobe provides a complete micrometer-scale quantitative chemical analysis of inorganic solids. The method is nondestructive and utilizes characteristic X-rays excited by an electron beam incident on a flat surface of the sample. This course provides an introduction to the theory of X-ray microanalysis through wavelength and energy dispersive spectrometry (WDS and EDS), ZAF matrix correction procedures and scanning electron imaging with back-scattered electron (BSE), secondary electron (SE), X-ray using WDS or EDS (elemental mapping), and cathodoluminescence (CL). Lab sessions involve hands-on use of the JEOL JXA-8200 Superprobe. The electron microprobe provides a complete micrometer-scale quantitative chemical analysis of inorganic solids. The method is nondestructive and utilizes characteristic X-rays excited by an electron beam incident on a flat surface of the sample. This course provides an introduction to the theory of X-ray microanalysis through wavelength and energy dispersive spectrometry (WDS and EDS), ZAF matrix correction procedures and scanning electron imaging with back-scattered electron (BSE), secondary electron (SE), X-ray using WDS or EDS (elemental mapping), and cathodoluminescence (CL). Lab sessions involve hands-on use of the JEOL JXA-8200 Superprobe.

Subjects

electron microprobe | electron microprobe | x-ray microanalysis | x-ray microanalysis | x-ray imaging | x-ray imaging | ZAF matrix corrections | ZAF matrix corrections | wavelength | wavelength | energy dispersive spectrometry | energy dispersive spectrometry | scanning backscattered electron | scanning backscattered electron | secondary electron | secondary electron | cathodoluminescence | cathodoluminescence

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.973 Organic Optoelectronics (MIT) 6.973 Organic Optoelectronics (MIT)

Description

The course examines optical and electronic processes in organic molecules and polymers that govern the behavior of practical organic optoelectronic devices. Electronic structure of a single organic molecule is used as a guide to the electronic behavior of organic aggregate structures. Emphasis is placed on the use of organic thin films in active organic devices including organic LEDs, solar cells, photodetectors, transistors, chemical sensors, memory cells, electrochromic devices, as well as xerography and organic non-linear optics. How to reach the ultimate miniaturization limit of molecular electronics and related nanoscale patterning techniques of organic materials will also be discussed. The class encompasses three laboratory sessions during which the students will practice the use of The course examines optical and electronic processes in organic molecules and polymers that govern the behavior of practical organic optoelectronic devices. Electronic structure of a single organic molecule is used as a guide to the electronic behavior of organic aggregate structures. Emphasis is placed on the use of organic thin films in active organic devices including organic LEDs, solar cells, photodetectors, transistors, chemical sensors, memory cells, electrochromic devices, as well as xerography and organic non-linear optics. How to reach the ultimate miniaturization limit of molecular electronics and related nanoscale patterning techniques of organic materials will also be discussed. The class encompasses three laboratory sessions during which the students will practice the use of

Subjects

organic optoelectronics | organic optoelectronics | optical | optical | electronic | electronic | polymers | polymers | organic thin films | organic thin films | organic LEDs | organic LEDs | solar cells | solar cells | photodetectors | photodetectors | transistors | transistors | chemical sensors | chemical sensors | memory cells | memory cells | electrochromic devices | electrochromic devices | xerography | xerography | organic non-linear optics | organic non-linear optics | miniaturization limit | miniaturization limit | molecular electronics | molecular electronics | nanoscale patterning | nanoscale patterning | vacuum organic deposition | vacuum organic deposition | non-vacuum organic deposition | non-vacuum organic deposition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.141 Electron Microprobe Analysis (MIT) 12.141 Electron Microprobe Analysis (MIT)

Description

Introduction to the theory of x-ray microanalysis through the electron microprobe including ZAF matrix corrections. Techniques to be discussed are wavelength and energy dispersive spectrometry, scanning backscattered electron, secondary electron, cathodoluminescence, and X-ray imaging. Lab sessions involve hands-on use of the electron microprobe.Offered for undergraduate credit, but persons interested in an in-depth discussion of quantitative x-ray analysis are invited to participate. Students will be required to complete lab exercises to obtain credit. Introduction to the theory of x-ray microanalysis through the electron microprobe including ZAF matrix corrections. Techniques to be discussed are wavelength and energy dispersive spectrometry, scanning backscattered electron, secondary electron, cathodoluminescence, and X-ray imaging. Lab sessions involve hands-on use of the electron microprobe.Offered for undergraduate credit, but persons interested in an in-depth discussion of quantitative x-ray analysis are invited to participate. Students will be required to complete lab exercises to obtain credit.

Subjects

x-ray microanalysis | x-ray microanalysis | electron microprobe | electron microprobe | ZAF matrix corrections | ZAF matrix corrections | wavelength and energy dispersive spectrometry | wavelength and energy dispersive spectrometry | scanning backscattered electron | scanning backscattered electron | secondary electron | secondary electron | cathodoluminescence | cathodoluminescence | X-ray imaging | X-ray imaging

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.772 Compound Semiconductor Devices (MIT) 6.772 Compound Semiconductor Devices (MIT)

Description

This course outlines the physics, modeling, application, and technology of compound semiconductors (primarily III-Vs) in electronic, optoelectronic, and photonic devices and integrated circuits. Topics include: properties, preparation, and processing of compound semiconductors; theory and practice of heterojunctions, quantum structures, and pseudomorphic strained layers; metal-semiconductor field effect transistors (MESFETs); heterojunction field effect transistors (HFETs) and bipolar transistors (HBTs); photodiodes, vertical-and in-plane-cavity laser diodes, and other optoelectronic devices. This course outlines the physics, modeling, application, and technology of compound semiconductors (primarily III-Vs) in electronic, optoelectronic, and photonic devices and integrated circuits. Topics include: properties, preparation, and processing of compound semiconductors; theory and practice of heterojunctions, quantum structures, and pseudomorphic strained layers; metal-semiconductor field effect transistors (MESFETs); heterojunction field effect transistors (HFETs) and bipolar transistors (HBTs); photodiodes, vertical-and in-plane-cavity laser diodes, and other optoelectronic devices.

Subjects

physics | physics | modeling | modeling | application | application | technology of compound semiconductors | technology of compound semiconductors | electronic | electronic | optoelectronic | optoelectronic | photonic devices | photonic devices | integrated circuits | integrated circuits | properties | properties | heterojunctions | heterojunctions | quantum structures | quantum structures | pseudomorphic strained layers | pseudomorphic strained layers | metal-semiconductor field effect transistors (MESFETs) | metal-semiconductor field effect transistors (MESFETs) | heterojunction field effect transistors (HFETs) | heterojunction field effect transistors (HFETs) | bipolar transistors (HBTs) | bipolar transistors (HBTs) | photodiodes | photodiodes | laser diodes | laser diodes | optoelectronic devices | optoelectronic devices | applications | applications | compound semiconductors | compound semiconductors | electronic devices | electronic devices | compound semiconductor processing | compound semiconductor processing | metal-semiconductor field effect transistors | metal-semiconductor field effect transistors | MESFET | MESFET | heterojunction field effect transistors | heterojunction field effect transistors | HFET | HFET | bipolar transistors | bipolar transistors | HBT | HBT | vertical-cavity laser diodes | vertical-cavity laser diodes | in-plane-cavity laser diodes | in-plane-cavity laser diodes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Electronic Instrumentation and Laboratory of Electronic Instrumentation Electronic Instrumentation and Laboratory of Electronic Instrumentation

Description

Firstly, the course begins with an introduction to Instrumentation Systems to solve the problem of measurements of physical systems, how to analyze experimental data and metrological aspects. Secondly, analog signal conditioning is presented along the main electronic circuits used and the influence of noise and interference in order to design such circuits. Thirdly, several sensors and electronic and optoelectronic transducers are described attending their electronic and optical characteristics along with their applications in several fields as position, displacement, temperature, etc. Finally, and due to their interest some electronic and optoelectronic sensors for biomedical instrumentation are also described. After the course the student should be able to solve basic instrumentation pro Firstly, the course begins with an introduction to Instrumentation Systems to solve the problem of measurements of physical systems, how to analyze experimental data and metrological aspects. Secondly, analog signal conditioning is presented along the main electronic circuits used and the influence of noise and interference in order to design such circuits. Thirdly, several sensors and electronic and optoelectronic transducers are described attending their electronic and optical characteristics along with their applications in several fields as position, displacement, temperature, etc. Finally, and due to their interest some electronic and optoelectronic sensors for biomedical instrumentation are also described. After the course the student should be able to solve basic instrumentation pro

Subjects

instrumentation | instrumentation | a de Telecomunicacin | a de Telecomunicacin | a Electrnica | a Electrnica | measurements | measurements | laboratory | laboratory | sensors | sensors | 2009 | 2009 | electronic instrumentation | electronic instrumentation

License

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/

Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.781J Submicrometer and Nanometer Technology (MIT) 6.781J Submicrometer and Nanometer Technology (MIT)

Description

Includes audio/video content: AV special element video. This course surveys techniques to fabricate and analyze submicron and nanometer structures, with applications. Optical and electron microscopy is reviewed. Additional topics that are covered include: surface characterization, preparation, and measurement techniques, resist technology, optical projection, interferometric, X-ray, ion, and electron lithography; Aqueous, ion, and plasma etching techniques; lift-off and electroplating; and ion implantation. Applications in microelectronics, microphotonics, information storage, and nanotechnology will also be explored.AcknowledgementsThe Instructors would like to thank Bob Barsotti, Bryan Cord, and Ben Wunsch for their work on the Atomic Force Microscope video. They would also like to thank Includes audio/video content: AV special element video. This course surveys techniques to fabricate and analyze submicron and nanometer structures, with applications. Optical and electron microscopy is reviewed. Additional topics that are covered include: surface characterization, preparation, and measurement techniques, resist technology, optical projection, interferometric, X-ray, ion, and electron lithography; Aqueous, ion, and plasma etching techniques; lift-off and electroplating; and ion implantation. Applications in microelectronics, microphotonics, information storage, and nanotechnology will also be explored.AcknowledgementsThe Instructors would like to thank Bob Barsotti, Bryan Cord, and Ben Wunsch for their work on the Atomic Force Microscope video. They would also like to thank

Subjects

submicron and nanometer structures | submicron and nanometer structures | optical and electron microscopy | optical and electron microscopy | Surface characterization | Surface characterization | preparation | preparation | and measurement techniques | and measurement techniques | Resist technology | Resist technology | optical projection | optical projection | interferometric | interferometric | X-ray | X-ray | ion | ion | and electron lithography | and electron lithography | Aqueous | Aqueous | and plasma etching techniques | and plasma etching techniques | Lift-off and electroplating | Lift-off and electroplating | Ion implantation | Ion implantation | microelectronics | microelectronics | microphotonics | microphotonics | information storage | information storage | and nanotechnology | and nanotechnology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.012 Microelectronic Devices and Circuits (MIT) 6.012 Microelectronic Devices and Circuits (MIT)

Description

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. This course is worth 4 Engineering Design Points. 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. This course is worth 4 Engineering Design Points.

Subjects

microelectronic device | microelectronic device | circuit | circuit | design | design | physical electronics | physical electronics | semiconductor junction | semiconductor junction | MOS device | MOS device | electrical behavior | electrical behavior | incremental technique | incremental technique | large-signal technique | large-signal technique | bipolar transistor | bipolar transistor | field effect transistor | field effect transistor | digital circuit | digital circuit | single-ended amplifier | single-ended amplifier | differential linear amplifier | differential linear amplifier | integrated circuit | integrated circuit

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.012 Microelectronic Devices and Circuits (MIT) 6.012 Microelectronic Devices and Circuits (MIT)

Description

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. This course is 12 units and is worth 4 Engineering Design Points. 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. This course is 12 units and is worth 4 Engineering Design Points.

Subjects

microelectronic device | microelectronic device | circuit | circuit | design | design | physical electronics | physical electronics | semiconductor junction | semiconductor junction | MOS device | MOS device | electrical behavior | electrical behavior | incremental technique | incremental technique | large-signal technique | large-signal technique | bipolar transistor | bipolar transistor | field effect transistor | field effect transistor | digital circuit | digital circuit | single-ended amplifier | single-ended amplifier | differential linear amplifier | differential linear amplifier | integrated circuit | integrated circuit

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Microelectronic solutions for digital photography Microelectronic solutions for digital photography

Description

The human eye is a fascinating and complicated device, but how do digital cameras capture images? This free course, Microelectronic solutions for digital photography, examines one of the humanmachine interfaces that link optical information to the electronic world. You will learn how the components within a digital camera capture images for electronic manipulation. First published on Thu, 17 Mar 2016 as Microelectronic solutions for digital photography. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 The human eye is a fascinating and complicated device, but how do digital cameras capture images? This free course, Microelectronic solutions for digital photography, examines one of the humanmachine interfaces that link optical information to the electronic world. You will learn how the components within a digital camera capture images for electronic manipulation. First published on Thu, 17 Mar 2016 as Microelectronic solutions for digital photography. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 First published on Thu, 17 Mar 2016 as Microelectronic solutions for digital photography. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 First published on Thu, 17 Mar 2016 as Microelectronic solutions for digital photography. To find out more visit The Open University's Openlearn website. Creative-Commons 2016

Subjects

Technology | Technology | engineering | engineering

License

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

Site sourced from

http://www.open.edu/openlearn/rss/try-content

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.730 Physics for Solid-State Applications (MIT) 6.730 Physics for Solid-State Applications (MIT)

Description

This course examines classical and quantum models of electrons and lattice vibrations in solids, emphasizing physical models for elastic properties, electronic transport, and heat capacity. Topics covered include: crystal lattices, electronic energy band structures, phonon dispersion relatons, effective mass theorem, semiclassical equations of motion, and impurity states in semiconductors, band structure and transport properties of selected semiconductors, and connection of quantum theory of solids with quasifermi levels and Boltzmann transport used in device modeling. This course examines classical and quantum models of electrons and lattice vibrations in solids, emphasizing physical models for elastic properties, electronic transport, and heat capacity. Topics covered include: crystal lattices, electronic energy band structures, phonon dispersion relatons, effective mass theorem, semiclassical equations of motion, and impurity states in semiconductors, band structure and transport properties of selected semiconductors, and connection of quantum theory of solids with quasifermi levels and Boltzmann transport used in device modeling.

Subjects

physics | physics | solid state application | solid state application | quantum model | quantum model | electron | electron | lattice vibration | lattice vibration | electronic transport | electronic transport | heat capacity | heat capacity | elastic properties | elastic properties | cystal lattice | cystal lattice | electronic energy band | electronic energy band | phonon dispersion relatons | phonon dispersion relatons | effective mass theorem | effective mass theorem | motion equation | motion equation | impurity state | impurity state | semiconductor | semiconductor | band structure | band structure | transport properties | transport properties | quantum theory of solids | quantum theory of solids | quasifermi | quasifermi | Boltzmann transport | Boltzmann transport | device modeling | device modeling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.012 Microelectronic Devices and Circuits (MIT) 6.012 Microelectronic Devices and Circuits (MIT)

Description

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. This course is worth 4 Engineering Design Points. 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. This course is worth 4 Engineering Design Points.

Subjects

microelectronic device | microelectronic device | circuit | circuit | design | design | physical electronics | physical electronics | semiconductor junction | semiconductor junction | MOS device | MOS device | electrical behavior | electrical behavior | incremental technique | incremental technique | large-signal technique | large-signal technique | bipolar transistor | bipolar transistor | field effect transistor | field effect transistor | digital circuit | digital circuit | single-ended amplifier | single-ended amplifier | differential linear amplifier | differential linear amplifier | integrated circuit | integrated circuit

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21M.361 Composing with Computers I (Electronic Music Composition) (MIT) 21M.361 Composing with Computers I (Electronic Music Composition) (MIT)

Description

Includes audio/video content: AV special element audio. This class explores sound and what can be done with it. Sources are recorded from students' surroundings - sampled and electronically generated (both analog and digital). Assignments include composing with the sampled sounds, feedback, and noise, using digital signal processing (DSP), convolution, algorithms, and simple mixing. The class focuses on sonic and compositional aspects rather than technology, math, or acoustics, though these are examined in varying detail. Students complete weekly composition and listening assignments; material for the latter is drawn from sound art, experimental electronica, conventional and non-conventional classical electronic works, popular music, and previous students' compositions. Includes audio/video content: AV special element audio. This class explores sound and what can be done with it. Sources are recorded from students' surroundings - sampled and electronically generated (both analog and digital). Assignments include composing with the sampled sounds, feedback, and noise, using digital signal processing (DSP), convolution, algorithms, and simple mixing. The class focuses on sonic and compositional aspects rather than technology, math, or acoustics, though these are examined in varying detail. Students complete weekly composition and listening assignments; material for the latter is drawn from sound art, experimental electronica, conventional and non-conventional classical electronic works, popular music, and previous students' compositions.

Subjects

computer music | computer music | sound | sound | music | music | audio | audio | listening | listening | electronic music | electronic music | new music | new music | electronica | electronica | sound art | sound art | noise | noise | noise music | noise music | avant-garde | avant-garde | contemporary music | contemporary music | modern music | modern music | composition | composition | recording | recording | music production | music production | recording studio | recording studio | audio software | audio software | recording software | recording software | sampling | sampling | synthesis | synthesis | audio engineering | audio engineering | mixing | mixing | Radiohead | Radiohead

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.014 Materials Laboratory (MIT) 3.014 Materials Laboratory (MIT)

Description

This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering. The laboratory subject combines experiments illustrating the principles of quantum mechanics, thermodynamics and structure with intensive oral and written technical communication practice. Specific topics include: experimental exploration of the connections between energetics, bonding and structure of materials, and application of these principles in instruments for materials characterization; demonstration of the wave-like nature of electrons; hands-on experience with techniques to quantify energy (DSC), bonding (XPS, AES, FTIR, UV/Vis and force spectroscopy), and degre This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering. The laboratory subject combines experiments illustrating the principles of quantum mechanics, thermodynamics and structure with intensive oral and written technical communication practice. Specific topics include: experimental exploration of the connections between energetics, bonding and structure of materials, and application of these principles in instruments for materials characterization; demonstration of the wave-like nature of electrons; hands-on experience with techniques to quantify energy (DSC), bonding (XPS, AES, FTIR, UV/Vis and force spectroscopy), and degre

Subjects

electron | electron | electronic properties | electronic properties | magnetism | magnetism | magentic properties | magentic properties | structure | structure | crystal | crystal | lattice | lattice | energy | energy | thermodynamics | thermodynamics | differential scanning calorimetry (DSC) | differential scanning calorimetry (DSC) | x-ray diffraction (XRD) | x-ray diffraction (XRD) | scanning probe microscopy (AFM | scanning probe microscopy (AFM | STM) | STM) | scanning electron microscopy (SEM) | scanning electron microscopy (SEM) | UV/Vis | UV/Vis | Raman spectroscopy | Raman spectroscopy | FTIR spectroscopy | FTIR spectroscopy | x-ray photoelectron spectroscopy (XPS) | x-ray photoelectron spectroscopy (XPS) | vibrating sample magnetometry (VSM) | vibrating sample magnetometry (VSM) | dynamic light scattering (DLS) | dynamic light scattering (DLS) | phonon | phonon | quantum | quantum | quantum mechanics | quantum mechanics | radiation | radiation | battery | battery | fuel cell | fuel cell | ferromagnetism | ferromagnetism | ferromagnetic | ferromagnetic | polymer | polymer | glass | glass | corrosion | corrosion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.014 Materials Laboratory (MIT) 3.014 Materials Laboratory (MIT)

Description

This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering. The laboratory subject combines experiments illustrating the principles of quantum mechanics, thermodynamics and structure with intensive oral and written technical communication practice. Specific topics include: experimental exploration of the connections between energetics, bonding and structure of materials, and application of these principles in instruments for materials characterization; demonstration of the wave-like nature of electrons; hands-on experience with techniques to quantify energy (DSC), bonding (XPS, AES, FTIR, UV/Vis and force spectroscopy), and degre This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering. The laboratory subject combines experiments illustrating the principles of quantum mechanics, thermodynamics and structure with intensive oral and written technical communication practice. Specific topics include: experimental exploration of the connections between energetics, bonding and structure of materials, and application of these principles in instruments for materials characterization; demonstration of the wave-like nature of electrons; hands-on experience with techniques to quantify energy (DSC), bonding (XPS, AES, FTIR, UV/Vis and force spectroscopy), and degre

Subjects

electron | electron | electronic properties | electronic properties | magnetism | magnetism | magentic properties | magentic properties | structure | structure | crystal | crystal | lattice | lattice | energy | energy | thermodynamics | thermodynamics | differential scanning calorimetry (DSC) | differential scanning calorimetry (DSC) | x-ray diffraction (XRD) | x-ray diffraction (XRD) | scanning probe microscopy (AFM | scanning probe microscopy (AFM | STM) | STM) | scanning electron microscopy (SEM) | scanning electron microscopy (SEM) | UV/Vis | UV/Vis | Raman spectroscopy | Raman spectroscopy | FTIR spectroscopy | FTIR spectroscopy | x-ray photoelectron spectroscopy (XPS) | x-ray photoelectron spectroscopy (XPS) | vibrating sample magnetometry (VSM) | vibrating sample magnetometry (VSM) | dynamic light scattering (DLS) | dynamic light scattering (DLS) | phonon | phonon | quantum | quantum | quantum mechanics | quantum mechanics | radiation | radiation | battery | battery | fuel cell | fuel cell | ferromagnetism | ferromagnetism | ferromagnetic | ferromagnetic | polymer | polymer | glass | glass | corrosion | corrosion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.04 Principles of Inorganic Chemistry II (MIT) 5.04 Principles of Inorganic Chemistry II (MIT)

Description

This course provides a systematic presentation of the chemical applications of group theory with emphasis on the formal development of the subject and its applications to the physical methods of inorganic chemical compounds. Against the backdrop of electronic structure, the electronic, vibrational, and magnetic properties of transition metal complexes are presented and their investigation by the appropriate spectroscopy described. This course provides a systematic presentation of the chemical applications of group theory with emphasis on the formal development of the subject and its applications to the physical methods of inorganic chemical compounds. Against the backdrop of electronic structure, the electronic, vibrational, and magnetic properties of transition metal complexes are presented and their investigation by the appropriate spectroscopy described.

Subjects

inorganic chemistry | inorganic chemistry | group theory | group theory | electronic structure of molecules | electronic structure of molecules | transition metal complexes | transition metal complexes | spectroscopy | spectroscopy | symmetry elements | symmetry elements | mathematical groups | mathematical groups | character tables | character tables | molecular point groups | molecular point groups | Huckel Theory | Huckel Theory | N-Dimensional cyclic systems | N-Dimensional cyclic systems | solid state theory | solid state theory | band theory | band theory | frontier molecular orbitals | frontier molecular orbitals | similarity transformations | similarity transformations | complexes | complexes | organometallic complexes | organometallic complexes | two electron bond | two electron bond | vibrational spectroscopy | vibrational spectroscopy | symmetry | symmetry | overtones | overtones | normal coordinat analysis | normal coordinat analysis | AOM | AOM | single electron CFT | single electron CFT | tanabe-sugano diagram | tanabe-sugano diagram | ligand | ligand | crystal field theory | crystal field theory | LCAO | LCAO

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.511 Theory of Solids I (MIT) 8.511 Theory of Solids I (MIT)

Description

This is the first term of a theoretical treatment of the physics of solids. Topics covered include crystal structure and band theory, density functional theory, a survey of properties of metals and semiconductors, quantum Hall effect, phonons, electron phonon interaction and superconductivity. This is the first term of a theoretical treatment of the physics of solids. Topics covered include crystal structure and band theory, density functional theory, a survey of properties of metals and semiconductors, quantum Hall effect, phonons, electron phonon interaction and superconductivity.

Subjects

physics of solids | physics of solids | elementary excitations | elementary excitations | symmetry | symmetry | theory of representations | theory of representations | energy bands | energy bands | excitons | excitons | critical points | critical points | response functions | response functions | interactions in the electron gas | interactions in the electron gas | electronic structure of metals | semimetals | electronic structure of metals | semimetals | semiconductors | semiconductors | insulators | insulators | Free electron model | Free electron model | Crystalline lattice | Crystalline lattice | Debye Waller factor | Debye Waller factor | Bravais lattice | Bravais lattice | Pseudopotential | Pseudopotential | van Hove singularity | van Hove singularity | Bloch oscillation | Bloch oscillation | quantization of orbits | quantization of orbits | de Haas-van Alphen effect | de Haas-van Alphen effect | Quantum Hall effect | Quantum Hall effect | Electron-electron interaction | Electron-electron interaction | Hartree-Fock approximation | Hartree-Fock approximation | Exchange energy for Jellium | Exchange energy for Jellium | Density functional theory | Density functional theory | Hubbard model | Hubbard model | Electron-phonon coupling | Electron-phonon coupling | phonons | phonons

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.012 Microelectronic Devices and Circuits (MIT) 6.012 Microelectronic Devices and Circuits (MIT)

Description

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits.

Subjects

semiconductor | semiconductor | integrated circuit | integrated circuit | p-n junction | p-n junction | mos | mos | mosfet | mosfet | digital logic | digital logic | nmos | nmos | cmos | cmos | bipolar junction transistor | bipolar junction transistor | single stage amplifier | single stage amplifier | frequency domain analysis | frequency domain analysis | common emitter | common emitter | multistage amplifier | multistage amplifier | intrinsic semiconductors | intrinsic semiconductors | electrons | electrons | holes | holes | carrier transport | carrier transport | 60mV rule | 60mV rule

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.012 Microelectronic Devices and Circuits (MIT) 6.012 Microelectronic Devices and Circuits (MIT)

Description

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and metal-on-silicon (MOS) devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and metal-on-silicon (MOS) devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits.

Subjects

semiconductor | semiconductor | integrated circuit | integrated circuit | p-n junction | p-n junction | mos | mos | mosfet | mosfet | digital logic | digital logic | nmos | nmos | cmos | cmos | bipolar junction transistor | bipolar junction transistor | single stage amplifier | single stage amplifier | frequency domain analysis | frequency domain analysis | common emitter | common emitter | multistage amplifier | multistage amplifier | intrinsic semiconductors | intrinsic semiconductors | electrons | electrons | holes | holes | carrier transport | carrier transport | 60mV rule | 60mV rule

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Electronic Components and Circuits Electronic Components and Circuits

Description

Operating principle, models and applications of basic semiconductors electronic components (diodes, bipolar transistors and field effect transistors), including the bias circuits. In addition, the concepts related to electronic analog amplification stages (small signal gain, input and output impedances and frequency response). Finally, the characteristics of operational amplifiers (OA) as analog integrated circuits and some of the most important AO applications. Operating principle, models and applications of basic semiconductors electronic components (diodes, bipolar transistors and field effect transistors), including the bias circuits. In addition, the concepts related to electronic analog amplification stages (small signal gain, input and output impedances and frequency response). Finally, the characteristics of operational amplifiers (OA) as analog integrated circuits and some of the most important AO applications.

Subjects

polarization | polarization | Single-stage amplification circuits | Single-stage amplification circuits | electronic circuits analysis | electronic circuits analysis | semiconductor devices | semiconductor devices | Frequency response of transistor amplifier | Frequency response of transistor amplifier | electronic circuits | electronic circuits | a Electrnica | a Electrnica | Multi-stage amplifiers | Multi-stage amplifiers | electronic components | electronic components | Electronic Amplification | Electronic Amplification | Operational Amplifier | Operational Amplifier | 2010 | 2010 | a de Sistemas Audiovisuales | a de Sistemas Audiovisuales

License

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/

Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | computer security | security | cryptography | secret-key | public-key | digital signature | authentication | identification | intrusion detection | virus | operating system | software | protection | electronic mail | email | electronic commerce | electronic cash | firewall | computer | digital | signature | electronic | cash | commerce | mail | operating | system | intrustion | detection | distributed | physical | discretionary | mandatory | access | control | biometrics | information | flow | models | covert | channels | integrity | logic | voting | risk | assessment | secure | web | browsers | architecture | engineering | certificates | multi-user computer systems | distributed computer systems | physical security | discretionary access control | mandatory access control | information-flow models | covert channels | integrity models | elementary cryptography | authentication logic;electronic cash | viruses | firewalls | electronic voting | risk assessment | secure web browsers | network security | architecture engineering | digital signatures | authentication schemes | identification schemes | formal models | secure operating systems | software protection | electronic mail security | World Wide Web | ecommerce | email security | www | payment protocols | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.857 Network and Computer Security (MIT)

Description

6.857 is an upper-level undergraduate, first-year graduate course on network and computer security. It fits within the department's Computer Systems and Architecture Engineering concentration. Topics covered include (but are not limited to) the following: Techniques for achieving security in multi-user computer systems and distributed computer systems; Cryptography: secret-key, public-key, digital signatures; Authentication and identification schemes; Intrusion detection: viruses; Formal models of computer security; Secure operating systems; Software protection; Security of electronic mail and the World Wide Web; Electronic commerce: payment protocols, electronic cash; Firewalls; and Risk assessment.

Subjects

network | computer security | security | cryptography | secret-key | public-key | digital signature | authentication | identification | intrusion detection | virus | operating system | software | protection | electronic mail | email | electronic commerce | electronic cash | firewall | computer | digital | signature | electronic | cash | commerce | mail | operating | system | intrustion | detection | distributed | physical | discretionary | mandatory | access | control | biometrics | information | flow | models | covert | channels | integrity | logic | voting | risk | assessment | secure | web | browsers | architecture | engineering | certificates | multi-user computer systems | distributed computer systems | physical security | discretionary access control | mandatory access control | information-flow models | covert channels | integrity models | elementary cryptography | authentication logic;electronic cash | viruses | firewalls | electronic voting | risk assessment | secure web browsers | network security | architecture engineering | digital signatures | authentication schemes | identification schemes | formal models | secure operating systems | software protection | electronic mail security | World Wide Web | ecommerce | email security | www | payment protocols | authentication logic

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata