Searching for face : 3960 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

2.23 Hydrofoils and Propellers (13.04) (MIT) 2.23 Hydrofoils and Propellers (13.04) (MIT)

Description

This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win

Subjects

Theory and design of hydrofoil sections | Theory and design of hydrofoil sections | lifting and thickness problems | lifting and thickness problems | sub-cavitating sections | sub-cavitating sections | unsteady flow problems | unsteady flow problems | computer-aided design | computer-aided design | low drag | low drag | cavitation free sections | cavitation free sections | Lifting line and lifting surface theory | Lifting line and lifting surface theory | hydrofoil craft | hydrofoil craft | rudder | rudder | and control surface design | and control surface design | propeller lifting line | propeller lifting line | lifting surface theory | lifting surface theory | wake adapted propellers | wake adapted propellers | unsteady propeller thrust and torque | unsteady propeller thrust and torque | axially symmetric bodies | axially symmetric bodies | low-aspect ratio lifting surfaces | low-aspect ratio lifting surfaces | Hydrodynamic performance | Hydrodynamic performance | design of waterjets | design of waterjets | wind turbine rotors in steady and stochastic wind | wind turbine rotors in steady and stochastic wind | hydrofoil craft | rudder | and control surface design | hydrofoil craft | rudder | and control surface design | 9. low drag | cavitation free sections | 9. low drag | cavitation free sections | 5. hydrofoil craft | rudder | and control surface design | 5. hydrofoil craft | rudder | and control surface design | low drag | cavitation free sections | low drag | cavitation free sections

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.04 Hydrofoils and Propellers (MIT) 13.04 Hydrofoils and Propellers (MIT)

Description

This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win

Subjects

Theory and design of hydrofoil sections | Theory and design of hydrofoil sections | lifting and thickness problems | lifting and thickness problems | sub-cavitating sections | sub-cavitating sections | unsteady flow problems | unsteady flow problems | computer-aided design | computer-aided design | low drag | low drag | cavitation free sections | cavitation free sections | Lifting line and lifting surface theory | Lifting line and lifting surface theory | hydrofoil craft | hydrofoil craft | rudder | rudder | and control surface design | and control surface design | propeller lifting line | propeller lifting line | lifting surface theory | lifting surface theory | wake adapted propellers | wake adapted propellers | unsteady propeller thrust and torque | unsteady propeller thrust and torque | axially symmetric bodies | axially symmetric bodies | low-aspect ratio lifting surfaces | low-aspect ratio lifting surfaces | Hydrodynamic performance | Hydrodynamic performance | design of waterjets | design of waterjets | wind turbine rotors in steady and stochastic wind | wind turbine rotors in steady and stochastic wind | hydrofoil craft | rudder | and control surface design | hydrofoil craft | rudder | and control surface design | 9. low drag | cavitation free sections | 9. low drag | cavitation free sections | 5. hydrofoil craft | rudder | and control surface design | 5. hydrofoil craft | rudder | and control surface design | low drag | cavitation free sections | low drag | cavitation free sections | 2.23 | 2.23

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.23 Hydrofoils and Propellers (13.04) (MIT) 2.23 Hydrofoils and Propellers (13.04) (MIT)

Description

This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win

Subjects

Theory and design of hydrofoil sections | Theory and design of hydrofoil sections | lifting and thickness problems | lifting and thickness problems | sub-cavitating sections | sub-cavitating sections | unsteady flow problems | unsteady flow problems | computer-aided design | computer-aided design | low drag | low drag | cavitation free sections | cavitation free sections | Lifting line and lifting surface theory | Lifting line and lifting surface theory | hydrofoil craft | hydrofoil craft | rudder | rudder | and control surface design | and control surface design | propeller lifting line | propeller lifting line | lifting surface theory | lifting surface theory | wake adapted propellers | wake adapted propellers | unsteady propeller thrust and torque | unsteady propeller thrust and torque | axially symmetric bodies | axially symmetric bodies | low-aspect ratio lifting surfaces | low-aspect ratio lifting surfaces | Hydrodynamic performance | Hydrodynamic performance | design of waterjets | design of waterjets | wind turbine rotors in steady and stochastic wind | wind turbine rotors in steady and stochastic wind | hydrofoil craft | rudder | and control surface design | hydrofoil craft | rudder | and control surface design | 9. low drag | cavitation free sections | 9. low drag | cavitation free sections | 5. hydrofoil craft | rudder | and control surface design | 5. hydrofoil craft | rudder | and control surface design | low drag | cavitation free sections | low drag | cavitation free sections

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.04 Hydrofoils and Propellers (MIT) 13.04 Hydrofoils and Propellers (MIT)

Description

This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win

Subjects

Theory and design of hydrofoil sections | Theory and design of hydrofoil sections | lifting and thickness problems | lifting and thickness problems | sub-cavitating sections | sub-cavitating sections | unsteady flow problems | unsteady flow problems | computer-aided design | computer-aided design | low drag | low drag | cavitation free sections | cavitation free sections | Lifting line and lifting surface theory | Lifting line and lifting surface theory | hydrofoil craft | hydrofoil craft | rudder | rudder | and control surface design | and control surface design | propeller lifting line | propeller lifting line | lifting surface theory | lifting surface theory | wake adapted propellers | wake adapted propellers | unsteady propeller thrust and torque | unsteady propeller thrust and torque | axially symmetric bodies | axially symmetric bodies | low-aspect ratio lifting surfaces | low-aspect ratio lifting surfaces | Hydrodynamic performance | Hydrodynamic performance | design of waterjets | design of waterjets | wind turbine rotors in steady and stochastic wind | wind turbine rotors in steady and stochastic wind | hydrofoil craft | rudder | and control surface design | hydrofoil craft | rudder | and control surface design | 9. low drag | cavitation free sections | 9. low drag | cavitation free sections | 5. hydrofoil craft | rudder | and control surface design | 5. hydrofoil craft | rudder | and control surface design | low drag | cavitation free sections | low drag | cavitation free sections | 2.23 | 2.23

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.051J Materials for Biomedical Applications (MIT) 3.051J Materials for Biomedical Applications (MIT)

Description

This class provides an introduction to the interactions between cells and the surfaces of biomaterials. The course covers: surface chemistry and physics of selected metals, polymers, and ceramics; surface characterization methodology; modification of biomaterials surfaces; quantitative assays of cell behavior in culture; biosensors and microarrays; bulk properties of implants; and acute and chronic response to implanted biomaterials. General topics include biosensors, drug delivery, and tissue engineering. This class provides an introduction to the interactions between cells and the surfaces of biomaterials. The course covers: surface chemistry and physics of selected metals, polymers, and ceramics; surface characterization methodology; modification of biomaterials surfaces; quantitative assays of cell behavior in culture; biosensors and microarrays; bulk properties of implants; and acute and chronic response to implanted biomaterials. General topics include biosensors, drug delivery, and tissue engineering.

Subjects

interactions between proteins | cells and surfaces of biomaterials | interactions between proteins | cells and surfaces of biomaterials | surface chemistry and physics of metals | polymers and ceramics | surface chemistry and physics of metals | polymers and ceramics | Surface characterization methodology | Surface characterization methodology | Quantitative assays of cell behavior in culture | Quantitative assays of cell behavior in culture | Organ replacement therapies | Organ replacement therapies | Acute and chronic response to implanted biomaterials | Acute and chronic response to implanted biomaterials | biosensors | drug delivery and tissue engineering | biosensors | drug delivery and tissue engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.051J Materials for Biomedical Applications (MIT) 3.051J Materials for Biomedical Applications (MIT)

Description

This class provides an introduction to the interactions between cells and the surfaces of biomaterials. The course covers: surface chemistry and physics of selected metals, polymers, and ceramics; surface characterization methodology; modification of biomaterials surfaces; quantitative assays of cell behavior in culture; biosensors and microarrays; bulk properties of implants; and acute and chronic response to implanted biomaterials. General topics include biosensors, drug delivery, and tissue engineering. This class provides an introduction to the interactions between cells and the surfaces of biomaterials. The course covers: surface chemistry and physics of selected metals, polymers, and ceramics; surface characterization methodology; modification of biomaterials surfaces; quantitative assays of cell behavior in culture; biosensors and microarrays; bulk properties of implants; and acute and chronic response to implanted biomaterials. General topics include biosensors, drug delivery, and tissue engineering.

Subjects

interactions between proteins | cells and surfaces of biomaterials | interactions between proteins | cells and surfaces of biomaterials | surface chemistry and physics of metals | polymers and ceramics | surface chemistry and physics of metals | polymers and ceramics | Surface characterization methodology | Surface characterization methodology | Quantitative assays of cell behavior in culture | Quantitative assays of cell behavior in culture | Organ replacement therapies | Organ replacement therapies | Acute and chronic response to implanted biomaterials | Acute and chronic response to implanted biomaterials | biosensors | drug delivery and tissue engineering | biosensors | drug delivery and tissue engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.49 Maneuvering and Control of Surface and Underwater Vehicles (MIT) 13.49 Maneuvering and Control of Surface and Underwater Vehicles (MIT)

Description

This course is about maneuvering motions of surface and underwater vehicles. Topics covered include: derivation of equations of motion, hydrodynamic coefficients, memory effects, linear and nonlinear forms of the equations of motion, control surfaces modeling and design, engine, propulsor, and transmission systems modeling and simulation during maneuvering. The course also deals with stability of motion, principles of multivariable automatic control, optimal control, Kalman filtering, and loop transfer recovery. We will also explore applications chosen from autopilots for surface vehicles; towing in open seas; and remotely operated vehicles. This course is about maneuvering motions of surface and underwater vehicles. Topics covered include: derivation of equations of motion, hydrodynamic coefficients, memory effects, linear and nonlinear forms of the equations of motion, control surfaces modeling and design, engine, propulsor, and transmission systems modeling and simulation during maneuvering. The course also deals with stability of motion, principles of multivariable automatic control, optimal control, Kalman filtering, and loop transfer recovery. We will also explore applications chosen from autopilots for surface vehicles; towing in open seas; and remotely operated vehicles.

Subjects

Maneuvering | Maneuvering | motion | motion | surface and underwater vehicles | surface and underwater vehicles | Derivation of equations of motion | Derivation of equations of motion | hydrodynamic coefficients | hydrodynamic coefficients | Memory effects | Memory effects | Linear and nonlinear forms | Linear and nonlinear forms | Control surfaces | Control surfaces | modeling and design | modeling and design | Engine | Engine | propulsor | propulsor | transmission systems modeling | transmission systems modeling | simulation | simulation | Stability of motion | Stability of motion | multivariable automatic control | multivariable automatic control | Optimal control | Optimal control | Kalman filtering | Kalman filtering | loop transfer recovery | loop transfer recovery | autopilots for surface vehicles | autopilots for surface vehicles | towing in open seas | towing in open seas | remotely operated vehicles | remotely operated vehicles | 2.154 | 2.154

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.154 Maneuvering and Control of Surface and Underwater Vehicles (13.49) (MIT) 2.154 Maneuvering and Control of Surface and Underwater Vehicles (13.49) (MIT)

Description

This course is about maneuvering motions of surface and underwater vehicles. Topics covered include: derivation of equations of motion, hydrodynamic coefficients, memory effects, linear and nonlinear forms of the equations of motion, control surfaces modeling and design, engine, propulsor, and transmission systems modeling and simulation during maneuvering. The course also deals with stability of motion, principles of multivariable automatic control, optimal control, Kalman filtering, and loop transfer recovery. We will also explore applications chosen from autopilots for surface vehicles; towing in open seas; and remotely operated vehicles. This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.49. In 2005, ocean engineering subjects became part of Co This course is about maneuvering motions of surface and underwater vehicles. Topics covered include: derivation of equations of motion, hydrodynamic coefficients, memory effects, linear and nonlinear forms of the equations of motion, control surfaces modeling and design, engine, propulsor, and transmission systems modeling and simulation during maneuvering. The course also deals with stability of motion, principles of multivariable automatic control, optimal control, Kalman filtering, and loop transfer recovery. We will also explore applications chosen from autopilots for surface vehicles; towing in open seas; and remotely operated vehicles. This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.49. In 2005, ocean engineering subjects became part of Co

Subjects

Maneuvering | Maneuvering | motion | motion | surface and underwater vehicles | surface and underwater vehicles | Derivation of equations of motion | Derivation of equations of motion | hydrodynamic coefficients | hydrodynamic coefficients | Memory effects | Memory effects | Linear and nonlinear forms | Linear and nonlinear forms | Control surfaces | Control surfaces | modeling and design | modeling and design | Engine | Engine | propulsor | propulsor | transmission systems modeling | transmission systems modeling | simulation | simulation | Stability of motion | Stability of motion | multivariable automatic control | multivariable automatic control | Optimal control | Optimal control | Kalman filtering | Kalman filtering | loop transfer recovery | loop transfer recovery | autopilots for surface vehicles | autopilots for surface vehicles | towing in open seas | towing in open seas | remotely operated vehicles | remotely operated vehicles

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.051J Materials for Biomedical Applications (MIT) 3.051J Materials for Biomedical Applications (MIT)

Description

This course gives an introduction to the interactions between proteins, cells and surfaces of biomaterials. It includes surface chemistry and physics of selected metals, polymers and ceramics, modification of biomaterials surfaces, and surface characterization methodology; quantitative assays of cell behavior in culture and methods of statistical analysis; organ replacement therapies and acute and chronic response to implanted biomaterials. The course includes topics in biosensors, drug delivery and tissue engineering. This course gives an introduction to the interactions between proteins, cells and surfaces of biomaterials. It includes surface chemistry and physics of selected metals, polymers and ceramics, modification of biomaterials surfaces, and surface characterization methodology; quantitative assays of cell behavior in culture and methods of statistical analysis; organ replacement therapies and acute and chronic response to implanted biomaterials. The course includes topics in biosensors, drug delivery and tissue engineering.

Subjects

Interactions between proteins | Interactions between proteins | cells | cells | Surface chemistry and physics of metals | Surface chemistry and physics of metals | polymers and ceramics | polymers and ceramics | Surface characterization methodology | Surface characterization methodology | Quantitative assays of cell behavior | Quantitative assays of cell behavior | Organ replacement therapies | Organ replacement therapies | Acute and chronic response to implanted biomaterials | Acute and chronic response to implanted biomaterials | Biosensors | Biosensors | drug delivery and tissue engineering | drug delivery and tissue engineering | Interactions between proteins | cells | Interactions between proteins | cells | Surface chemistry and physics of metals | polymers and ceramics | Surface chemistry and physics of metals | polymers and ceramics | Biosensors | drug delivery and tissue engineering | Biosensors | drug delivery and tissue engineering | BE.340J | BE.340J | 3.051 | 3.051 | BE.340 | BE.340 | 20.340 | 20.340

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.051J Materials for Biomedical Applications (MIT) 3.051J Materials for Biomedical Applications (MIT)

Description

This class provides an introduction to the interactions between cells and the surfaces of biomaterials. The course covers: surface chemistry and physics of selected metals, polymers, and ceramics; surface characterization methodology; modification of biomaterials surfaces; quantitative assays of cell behavior in culture; biosensors and microarrays; bulk properties of implants; and acute and chronic response to implanted biomaterials. General topics include biosensors, drug delivery, and tissue engineering. This class provides an introduction to the interactions between cells and the surfaces of biomaterials. The course covers: surface chemistry and physics of selected metals, polymers, and ceramics; surface characterization methodology; modification of biomaterials surfaces; quantitative assays of cell behavior in culture; biosensors and microarrays; bulk properties of implants; and acute and chronic response to implanted biomaterials. General topics include biosensors, drug delivery, and tissue engineering.

Subjects

interactions between proteins | cells and surfaces of biomaterials | interactions between proteins | cells and surfaces of biomaterials | surface chemistry and physics of metals | polymers and ceramics | surface chemistry and physics of metals | polymers and ceramics | Surface characterization methodology | Surface characterization methodology | Quantitative assays of cell behavior in culture | Quantitative assays of cell behavior in culture | Organ replacement therapies | Organ replacement therapies | Acute and chronic response to implanted biomaterials | Acute and chronic response to implanted biomaterials | biosensors | drug delivery and tissue engineering | biosensors | drug delivery and tissue engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.49 Maneuvering and Control of Surface and Underwater Vehicles (MIT) 13.49 Maneuvering and Control of Surface and Underwater Vehicles (MIT)

Description

This course is about maneuvering motions of surface and underwater vehicles. Topics covered include: derivation of equations of motion, hydrodynamic coefficients, memory effects, linear and nonlinear forms of the equations of motion, control surfaces modeling and design, engine, propulsor, and transmission systems modeling and simulation during maneuvering. The course also deals with stability of motion, principles of multivariable automatic control, optimal control, Kalman filtering, and loop transfer recovery. We will also explore applications chosen from autopilots for surface vehicles; towing in open seas; and remotely operated vehicles. This course is about maneuvering motions of surface and underwater vehicles. Topics covered include: derivation of equations of motion, hydrodynamic coefficients, memory effects, linear and nonlinear forms of the equations of motion, control surfaces modeling and design, engine, propulsor, and transmission systems modeling and simulation during maneuvering. The course also deals with stability of motion, principles of multivariable automatic control, optimal control, Kalman filtering, and loop transfer recovery. We will also explore applications chosen from autopilots for surface vehicles; towing in open seas; and remotely operated vehicles.

Subjects

Maneuvering | Maneuvering | motion | motion | surface and underwater vehicles | surface and underwater vehicles | Derivation of equations of motion | Derivation of equations of motion | hydrodynamic coefficients | hydrodynamic coefficients | Memory effects | Memory effects | Linear and nonlinear forms | Linear and nonlinear forms | Control surfaces | Control surfaces | modeling and design | modeling and design | Engine | Engine | propulsor | propulsor | transmission systems modeling | transmission systems modeling | simulation | simulation | Stability of motion | Stability of motion | multivariable automatic control | multivariable automatic control | Optimal control | Optimal control | Kalman filtering | Kalman filtering | loop transfer recovery | loop transfer recovery | autopilots for surface vehicles | autopilots for surface vehicles | towing in open seas | towing in open seas | remotely operated vehicles | remotely operated vehicles | 2.154 | 2.154

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 5101: Surface Characteristics of Aluminium and Aluminium Alloys TALAT Lecture 5101: Surface Characteristics of Aluminium and Aluminium Alloys

Description

This lecture provides a realistic view of the aluminium surface in order to understand the need for "effective" surface treatment. Some knowledge in aluminium metallurgy is assumed. This lecture provides a realistic view of the aluminium surface in order to understand the need for "effective" surface treatment. Some knowledge in aluminium metallurgy is assumed.

Subjects

aluminium | aluminium | aluminum | aluminum | european aluminium association | european aluminium association | EAA | EAA | Training in Aluminium Application Technologies | Training in Aluminium Application Technologies | training | training | metallurgy | metallurgy | technology | technology | lecture | lecture | surface treatment | surface treatment | surface characteristics | surface characteristics | deliberate alloying | deliberate alloying | corrosion | corrosion | surface protection | surface protection | applications | applications | surface improvement | surface improvement | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.051J Materials for Biomedical Applications (MIT) 3.051J Materials for Biomedical Applications (MIT)

Description

This course gives an introduction to the interactions between proteins, cells and surfaces of biomaterials. It includes surface chemistry and physics of selected metals, polymers and ceramics, modification of biomaterials surfaces, and surface characterization methodology; quantitative assays of cell behavior in culture and methods of statistical analysis; organ replacement therapies and acute and chronic response to implanted biomaterials. The course includes topics in biosensors, drug delivery and tissue engineering. This course gives an introduction to the interactions between proteins, cells and surfaces of biomaterials. It includes surface chemistry and physics of selected metals, polymers and ceramics, modification of biomaterials surfaces, and surface characterization methodology; quantitative assays of cell behavior in culture and methods of statistical analysis; organ replacement therapies and acute and chronic response to implanted biomaterials. The course includes topics in biosensors, drug delivery and tissue engineering.

Subjects

Interactions between proteins | Interactions between proteins | cells | cells | Surface chemistry and physics of metals | Surface chemistry and physics of metals | polymers and ceramics | polymers and ceramics | Surface characterization methodology | Surface characterization methodology | Quantitative assays of cell behavior | Quantitative assays of cell behavior | Organ replacement therapies | Organ replacement therapies | Acute and chronic response to implanted biomaterials | Acute and chronic response to implanted biomaterials | Biosensors | Biosensors | drug delivery and tissue engineering | drug delivery and tissue engineering | Interactions between proteins | cells | Interactions between proteins | cells | Surface chemistry and physics of metals | polymers and ceramics | Surface chemistry and physics of metals | polymers and ceramics | Biosensors | drug delivery and tissue engineering | Biosensors | drug delivery and tissue engineering | BE.340J | BE.340J | 3.051 | 3.051 | BE.340 | BE.340 | 20.340 | 20.340

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.154 Maneuvering and Control of Surface and Underwater Vehicles (13.49) (MIT) 2.154 Maneuvering and Control of Surface and Underwater Vehicles (13.49) (MIT)

Description

This course is about maneuvering motions of surface and underwater vehicles. Topics covered include: derivation of equations of motion, hydrodynamic coefficients, memory effects, linear and nonlinear forms of the equations of motion, control surfaces modeling and design, engine, propulsor, and transmission systems modeling and simulation during maneuvering. The course also deals with stability of motion, principles of multivariable automatic control, optimal control, Kalman filtering, and loop transfer recovery. We will also explore applications chosen from autopilots for surface vehicles; towing in open seas; and remotely operated vehicles. This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.49. In 2005, ocean engineering subjects became part of Co This course is about maneuvering motions of surface and underwater vehicles. Topics covered include: derivation of equations of motion, hydrodynamic coefficients, memory effects, linear and nonlinear forms of the equations of motion, control surfaces modeling and design, engine, propulsor, and transmission systems modeling and simulation during maneuvering. The course also deals with stability of motion, principles of multivariable automatic control, optimal control, Kalman filtering, and loop transfer recovery. We will also explore applications chosen from autopilots for surface vehicles; towing in open seas; and remotely operated vehicles. This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.49. In 2005, ocean engineering subjects became part of Co

Subjects

Maneuvering | Maneuvering | motion | motion | surface and underwater vehicles | surface and underwater vehicles | Derivation of equations of motion | Derivation of equations of motion | hydrodynamic coefficients | hydrodynamic coefficients | Memory effects | Memory effects | Linear and nonlinear forms | Linear and nonlinear forms | Control surfaces | Control surfaces | modeling and design | modeling and design | Engine | Engine | propulsor | propulsor | transmission systems modeling | transmission systems modeling | simulation | simulation | Stability of motion | Stability of motion | multivariable automatic control | multivariable automatic control | Optimal control | Optimal control | Kalman filtering | Kalman filtering | loop transfer recovery | loop transfer recovery | autopilots for surface vehicles | autopilots for surface vehicles | towing in open seas | towing in open seas | remotely operated vehicles | remotely operated vehicles

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.831 User Interface Design and Implementation (MIT) 6.831 User Interface Design and Implementation (MIT)

Description

6.831 introduces the principles of user interface development, focusing on three key areas: Design: How to design good user interfaces, starting with human capabilities (including the human information processor model, perception, motor skills, color, attention, and errors) and using those capabilities to drive design techniques: task analysis, user-centered design, iterative design, usability guidelines, interaction styles, and graphic design principles. Implementation: Techniques for building user interfaces, including low-fidelity prototypes, Wizard of Oz, and other prototyping tools; input models, output models, model-view-controller, layout, constraints, and toolkits. Evaluation: Techniques for evaluating and measuring interface usability, including heuristic evaluation, predicti 6.831 introduces the principles of user interface development, focusing on three key areas: Design: How to design good user interfaces, starting with human capabilities (including the human information processor model, perception, motor skills, color, attention, and errors) and using those capabilities to drive design techniques: task analysis, user-centered design, iterative design, usability guidelines, interaction styles, and graphic design principles. Implementation: Techniques for building user interfaces, including low-fidelity prototypes, Wizard of Oz, and other prototyping tools; input models, output models, model-view-controller, layout, constraints, and toolkits. Evaluation: Techniques for evaluating and measuring interface usability, including heuristic evaluation, predicti

Subjects

human-computer interfaces | human-computer interfaces | human capabilities | human capabilities | human information processor | human information processor | perception | perception | Fitts's Law | Fitts's Law | color | color | hearing | hearing | task analysis | task analysis | user-centered design | user-centered design | iterative design | iterative design | low-fidelity prototyping | low-fidelity prototyping | heuristic evaluation | heuristic evaluation | keystroke-level models | keystroke-level models | formative evaluation | formative evaluation | input models | input models | output models | output models | model-view-controller | model-view-controller | toolkits | toolkits | programming project | programming project | GUI | GUI | Java | Java

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.564 Information Technology I (MIT) 15.564 Information Technology I (MIT)

Description

Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed. Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed.

Subjects

developing-country governments; international | developing-country governments; international | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers | computers | future developments | future developments | networks | networks | distributed computing | distributed computing | programming languages | programming languages | firewall | firewall | e-business | e-business | computer architecture | computer architecture | operating | operating | software development | software development | database | database | user interface | user interface | telecommunication | telecommunication | data transmission | data transmission | local area network | local area network | wireless network | wireless network | internet | internet | world wide web | world wide web | digital security | digital security | architecture | architecture | data | data | transmission | transmission | wireless | wireless | interface | interface | user | user | software | software | development | development | programming | programming | languages | languages | distributed | distributed | computing | computing | LAN | LAN | local | local | area | area | future | future | digital | digital | security | security | technology | technology | information | information | management | management | systems | systems | relational | relational | graphical | graphical | interfaces | interfaces | client/server | client/server | enterprise | enterprise | applications | applications | cryptography | cryptography | services | services | Microsoft | Microsoft | Access | Access | Lotus Notes | Lotus Notes | processing | processing | memory | memory | I/O | I/O | CPU | CPU | OS | OS | hardware | hardware | compression | compression | SQL | SQL | queries | queries | design | design | WAN | WAN | wide | wide | Ethernet | Ethernet | packet-switched | packet-switched | peer-to-peer | peer-to-peer | WWW | WWW | public | public | key | key | mining | mining | warehousing | warehousing | concepts | concepts | conceptual | conceptual | modern computing | modern computing | information management | information management | operating systems | operating systems | relational database systems | relational database systems | graphical user interfaces | graphical user interfaces | client/server systems | client/server systems | enterprise applications | enterprise applications | web.internet services | web.internet services | Microsoft Access | Microsoft Access | database management systems | database management systems | information technology | information technology | telecommunications | telecommunications | eBusiness applications | eBusiness applications | client | client | servers | servers | wireless area network | wireless area network

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.158J Computational Geometry (MIT) 2.158J Computational Geometry (MIT)

Description

Topics in surface modeling: b-splines, non-uniform rational b-splines, physically based deformable surfaces, sweeps and generalized cylinders, offsets, blending and filleting surfaces. Non-linear solvers and intersection problems. Solid modeling: constructive solid geometry, boundary representation, non-manifold and mixed-dimension boundary representation models, octrees. Robustness of geometric computations. Interval methods. Finite and boundary element discretization methods for continuum mechanics problems. Scientific visualization. Variational geometry. Tolerances. Inspection methods. Feature representation and recognition. Shape interrogation for design, analysis, and manufacturing. Involves analytical and programming assignments. This course was originally offered in Course 13 (Depar Topics in surface modeling: b-splines, non-uniform rational b-splines, physically based deformable surfaces, sweeps and generalized cylinders, offsets, blending and filleting surfaces. Non-linear solvers and intersection problems. Solid modeling: constructive solid geometry, boundary representation, non-manifold and mixed-dimension boundary representation models, octrees. Robustness of geometric computations. Interval methods. Finite and boundary element discretization methods for continuum mechanics problems. Scientific visualization. Variational geometry. Tolerances. Inspection methods. Feature representation and recognition. Shape interrogation for design, analysis, and manufacturing. Involves analytical and programming assignments. This course was originally offered in Course 13 (Depar

Subjects

surface modeling | surface modeling | b-splines | b-splines | deformable surfaces | deformable surfaces | generalized cylinders | generalized cylinders | offsets | offsets | filleting surfaces | filleting surfaces | Non-linear solvers and intersection problems | Non-linear solvers and intersection problems | Solid modeling | Solid modeling | boundary representation | boundary representation | non-manifold and mixed-dimension boundary representation models | non-manifold and mixed-dimension boundary representation models | octrees | octrees | Interval methods | Interval methods | discretization methods | discretization methods | Scientific visualization | Scientific visualization | Variational geometry | Variational geometry | Tolerances | Tolerances | Inspection methods | Inspection methods | Shape interrogation | Shape interrogation | 13.472J | 13.472J | 13.472 | 13.472 | 2.158 | 2.158 | 1.128 | 1.128 | 16.940 | 16.940

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Surface Irrigation Design Surface Irrigation Design

Description

/Surface_Irrigation_Design This course was originally developed for the United States Department of Agriculture. It contains nearly 20 video lecture presentations with accompanying slides in English, Arabic, and French, an online textbook, homework assignments, and downloadable surface irrigation simulation software also developed by Dr. Walker. This course highlights design and evaluation of surface irrigation systems, field measurements for evaluating and improving uniformity and efficiency, simulation of surface systems, and land leveling computation and equipment. /Surface_Irrigation_Design This course was originally developed for the United States Department of Agriculture. It contains nearly 20 video lecture presentations with accompanying slides in English, Arabic, and French, an online textbook, homework assignments, and downloadable surface irrigation simulation software also developed by Dr. Walker. This course highlights design and evaluation of surface irrigation systems, field measurements for evaluating and improving uniformity and efficiency, simulation of surface systems, and land leveling computation and equipment.

Subjects

biological | biological | engineering | engineering | design | design | irrigation | irrigation | surface | surface

License

Copyright 2008, by the Contributing Authors Copyright 2008, by the Contributing Authors http://creativecommons.org/licenses/by-nc-sa/2.5/

Site sourced from

http://ocw.usu.edu/Biological_and_Irrigation_Engineering/index-rss_recent

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.472J Computational Geometry (MIT) 13.472J Computational Geometry (MIT)

Description

Topics in surface modeling: b-splines, non-uniform rational b-splines, physically based deformable surfaces, sweeps and generalized cylinders, offsets, blending and filleting surfaces. Non-linear solvers and intersection problems. Solid modeling: constructive solid geometry, boundary representation, non-manifold and mixed-dimension boundary representation models, octrees. Robustness of geometric computations. Interval methods. Finite and boundary element discretization methods for continuum mechanics problems. Scientific visualization. Variational geometry. Tolerances. Inspection methods. Feature representation and recognition. Shape interrogation for design, analysis, and manufacturing. Involves analytical and programming assignments. Topics in surface modeling: b-splines, non-uniform rational b-splines, physically based deformable surfaces, sweeps and generalized cylinders, offsets, blending and filleting surfaces. Non-linear solvers and intersection problems. Solid modeling: constructive solid geometry, boundary representation, non-manifold and mixed-dimension boundary representation models, octrees. Robustness of geometric computations. Interval methods. Finite and boundary element discretization methods for continuum mechanics problems. Scientific visualization. Variational geometry. Tolerances. Inspection methods. Feature representation and recognition. Shape interrogation for design, analysis, and manufacturing. Involves analytical and programming assignments.

Subjects

surface modeling | surface modeling | b-splines | b-splines | deformable surfaces | deformable surfaces | generalized cylinders | generalized cylinders | offsets | offsets | filleting surfaces | filleting surfaces | Non-linear solvers and intersection problems | Non-linear solvers and intersection problems | Solid modeling | Solid modeling | boundary representation | boundary representation | non-manifold and mixed-dimension boundary representation models | non-manifold and mixed-dimension boundary representation models | octrees | octrees | Interval methods | Interval methods | discretization methods | discretization methods | Scientific visualization | Scientific visualization | Variational geometry | Variational geometry | Tolerances | Tolerances | Inspection methods | Inspection methods | Shape interrogation | Shape interrogation | 2.158J | 2.158J | 1.128J | 1.128J | 16.940J | 16.940J | 13.472 | 13.472 | 2.158 | 2.158 | 1.128 | 1.128 | 16.940 | 16.940

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.022 Surface Waves and their Interaction With Floating Bodies (MIT) 13.022 Surface Waves and their Interaction With Floating Bodies (MIT)

Description

The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures.Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and their The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures.Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and their

Subjects

floating bodies | floating bodies | offshore platforms | offshore platforms | ships | ships | fluid dynamics | fluid dynamics | surface energy | surface energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.564 Information Technology I (MIT) 15.564 Information Technology I (MIT)

Description

Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed. Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed.

Subjects

developing-country governments; international | developing-country governments; international | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers | computers | future developments | future developments | networks | networks | distributed computing | distributed computing | programming languages | programming languages | firewall | firewall | e-business | e-business | computer architecture | computer architecture | operating | operating | software development | software development | database | database | user interface | user interface | telecommunication | telecommunication | data transmission | data transmission | local area network | local area network | wireless network | wireless network | internet | internet | world wide web | world wide web | digital security | digital security | architecture | architecture | data | data | transmission | transmission | wireless | wireless | interface | interface | user | user | software | software | development | development | programming | programming | languages | languages | distributed | distributed | computing | computing | LAN | LAN | local | local | area | area | future | future | digital | digital | security | security | technology | technology | information | information | management | management | systems | systems | relational | relational | graphical | graphical | interfaces | interfaces | client/server | client/server | enterprise | enterprise | applications | applications | cryptography | cryptography | services | services | Microsoft | Microsoft | Access | Access | Lotus Notes | Lotus Notes | processing | processing | memory | memory | I/O | I/O | CPU | CPU | OS | OS | hardware | hardware | compression | compression | SQL | SQL | queries | queries | design | design | WAN | WAN | wide | wide | Ethernet | Ethernet | packet-switched | packet-switched | peer-to-peer | peer-to-peer | WWW | WWW | public | public | key | key | mining | mining | warehousing | warehousing | concepts | concepts | conceptual | conceptual | modern computing | modern computing | information management | information management | operating systems | operating systems | relational database systems | relational database systems | graphical user interfaces | graphical user interfaces | client/server systems | client/server systems | enterprise applications | enterprise applications | web.internet services | web.internet services | Microsoft Access | Microsoft Access | database management systems | database management systems | information technology | information technology | telecommunications | telecommunications | eBusiness applications | eBusiness applications | client | client | servers | servers | wireless area network | wireless area network

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.831 User Interface Design and Implementation (MIT) 6.831 User Interface Design and Implementation (MIT)

Description

6.831 introduces the principles of user interface development, focusing on three key areas: Design: How to design good user interfaces, starting with human capabilities (including the human information processor model, perception, motor skills, color, attention, and errors) and using those capabilities to drive design techniques: task analysis, user-centered design, iterative design, usability guidelines, interaction styles, and graphic design principles. Implementation: Techniques for building user interfaces, including low-fidelity prototypes, Wizard of Oz, and other prototyping tools; input models, output models, model-view-controller, layout, constraints, and toolkits. Evaluation: Techniques for evaluating and measuring interface usability, including heuristic evaluation, predicti 6.831 introduces the principles of user interface development, focusing on three key areas: Design: How to design good user interfaces, starting with human capabilities (including the human information processor model, perception, motor skills, color, attention, and errors) and using those capabilities to drive design techniques: task analysis, user-centered design, iterative design, usability guidelines, interaction styles, and graphic design principles. Implementation: Techniques for building user interfaces, including low-fidelity prototypes, Wizard of Oz, and other prototyping tools; input models, output models, model-view-controller, layout, constraints, and toolkits. Evaluation: Techniques for evaluating and measuring interface usability, including heuristic evaluation, predicti

Subjects

human-computer interfaces | human-computer interfaces | human capabilities | human capabilities | human information processor | human information processor | perception | perception | Fitts's Law | Fitts's Law | color | color | hearing | hearing | task analysis | task analysis | user-centered design | user-centered design | iterative design | iterative design | low-fidelity prototyping | low-fidelity prototyping | heuristic evaluation | heuristic evaluation | keystroke-level models | keystroke-level models | formative evaluation | formative evaluation | input models | input models | output models | output models | model-view-controller | model-view-controller | toolkits | toolkits | programming project | programming project | GUI | GUI | Java | Java

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.564 Information Technology I (MIT) 15.564 Information Technology I (MIT)

Description

Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed. Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed.

Subjects

developing-country governments; international | developing-country governments; international | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers | computers | future developments | future developments | networks | networks | distributed computing | distributed computing | programming languages | programming languages | firewall | firewall | e-business | e-business | computer architecture | computer architecture | operating | operating | software development | software development | database | database | user interface | user interface | telecommunication | telecommunication | data transmission | data transmission | local area network | local area network | wireless network | wireless network | internet | internet | world wide web | world wide web | digital security | digital security | architecture | architecture | data | data | transmission | transmission | wireless | wireless | interface | interface | user | user | software | software | development | development | programming | programming | languages | languages | distributed | distributed | computing | computing | LAN | LAN | local | local | area | area | future | future | digital | digital | security | security | technology | technology | information | information | management | management | systems | systems | relational | relational | graphical | graphical | interfaces | interfaces | client/server | client/server | enterprise | enterprise | applications | applications | cryptography | cryptography | services | services | Microsoft | Microsoft | Access | Access | Lotus Notes | Lotus Notes | processing | processing | memory | memory | I/O | I/O | CPU | CPU | OS | OS | hardware | hardware | compression | compression | SQL | SQL | queries | queries | design | design | WAN | WAN | wide | wide | Ethernet | Ethernet | packet-switched | packet-switched | peer-to-peer | peer-to-peer | WWW | WWW | public | public | key | key | mining | mining | warehousing | warehousing | concepts | concepts | conceptual | conceptual | modern computing | modern computing | information management | information management | operating systems | operating systems | relational database systems | relational database systems | graphical user interfaces | graphical user interfaces | client/server systems | client/server systems | enterprise applications | enterprise applications | web.internet services | web.internet services | Microsoft Access | Microsoft Access | database management systems | database management systems | information technology | information technology | telecommunications | telecommunications | eBusiness applications | eBusiness applications | client | client | servers | servers | wireless area network | wireless area network

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.564 Information Technology I (MIT) 15.564 Information Technology I (MIT)

Description

Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed. Information Technology I helps students understand technical concepts underlying current and future developments in information technology. There will be a special emphasis on networks and distributed computing. Students will also gain some hands-on exposure to powerful, high-level tools for making computers do amazing things, without the need for conventional programming languages. Since 15.564 is an introductory course, no knowledge of how computers work or are programmed is assumed.

Subjects

developing-country governments; international | developing-country governments; international | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers; future developments; networks;distributed computing; programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers;future developments;networks;distributed computing;programming languages;firewall;e-business;computerarchitecture;operating systems;software development;database;user interface;telecommunication;data transmission;localarea network;wireless network;internet;world wide web;digital security | computers | computers | future developments | future developments | networks | networks | distributed computing | distributed computing | programming languages | programming languages | firewall | firewall | e-business | e-business | computer architecture | computer architecture | operating | operating | software development | software development | database | database | user interface | user interface | telecommunication | telecommunication | data transmission | data transmission | local area network | local area network | wireless network | wireless network | internet | internet | world wide web | world wide web | digital security | digital security | architecture | architecture | data | data | transmission | transmission | wireless | wireless | interface | interface | user | user | software | software | development | development | programming | programming | languages | languages | distributed | distributed | computing | computing | LAN | LAN | local | local | area | area | future | future | digital | digital | security | security | technology | technology | information | information | management | management | systems | systems | relational | relational | graphical | graphical | interfaces | interfaces | client/server | client/server | enterprise | enterprise | applications | applications | cryptography | cryptography | services | services | Microsoft | Microsoft | Access | Access | Lotus Notes | Lotus Notes | processing | processing | memory | memory | I/O | I/O | CPU | CPU | OS | OS | hardware | hardware | compression | compression | SQL | SQL | queries | queries | design | design | WAN | WAN | wide | wide | Ethernet | Ethernet | packet-switched | packet-switched | peer-to-peer | peer-to-peer | WWW | WWW | public | public | key | key | mining | mining | warehousing | warehousing | concepts | concepts | conceptual | conceptual | modern computing | modern computing | information management | information management | operating systems | operating systems | relational database systems | relational database systems | graphical user interfaces | graphical user interfaces | client/server systems | client/server systems | enterprise applications | enterprise applications | web.internet services | web.internet services | Microsoft Access | Microsoft Access | database management systems | database management systems | information technology | information technology | telecommunications | telecommunications | eBusiness applications | eBusiness applications | client | client | servers | servers | wireless area network | wireless area network

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4704: Surface Preparation and Application Procedures TALAT Lecture 4704: Surface Preparation and Application Procedures

Description

This lecture describes the important aspects of surface preparation and pretreatments for adhesive joining of aluminium parts; it illustrates the methods and equipment necessary to obtain good adhesive bonds. General background in production engineering and material science, some knowledge of mechanics and polymer science is assumed. This lecture describes the important aspects of surface preparation and pretreatments for adhesive joining of aluminium parts; it illustrates the methods and equipment necessary to obtain good adhesive bonds. General background in production engineering and material science, some knowledge of mechanics and polymer science is assumed.

Subjects

aluminium | aluminium | aluminum | aluminum | european aluminium association | european aluminium association | EAA | EAA | Training in Aluminium Application Technologies | Training in Aluminium Application Technologies | training | training | metallurgy | metallurgy | technology | technology | lecture | lecture | joining | joining | fastening | fastening | mechanical | mechanical | adhesive bonding | adhesive bonding | surface preparation | surface preparation | surface layers | surface layers | surface pretreatment | surface pretreatment | adhesive strength | adhesive strength | surface roughness | surface roughness | applying adhesives | applying adhesives | working adhesives | working adhesives | adhesive joint strength | adhesive joint strength | adhesive layer | adhesive layer | pressure application | pressure application | hardening temperature | hardening temperature | hardening time | hardening time | equipment | equipment | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata