Searching for greenhouse gases : 11 results found | RSS Feed for this search

12.340 Global Warming Science (MIT) 12.340 Global Warming Science (MIT)

Description

This course provides students with a scientific foundation of anthropogenic climate change and an introduction to climate models. It focuses on fundamental physical processes that shape climate (e.g. solar variability, orbital mechanics, greenhouse gases, atmospheric and oceanic circulation, and volcanic and soil aerosols) and on evidence for past and present climate change. During the course they discuss material consequences of climate change, including sea level change, variations in precipitation, vegetation, storminess, and the incidence of disease. This course also examines the science behind mitigation and adaptation proposals. This course provides students with a scientific foundation of anthropogenic climate change and an introduction to climate models. It focuses on fundamental physical processes that shape climate (e.g. solar variability, orbital mechanics, greenhouse gases, atmospheric and oceanic circulation, and volcanic and soil aerosols) and on evidence for past and present climate change. During the course they discuss material consequences of climate change, including sea level change, variations in precipitation, vegetation, storminess, and the incidence of disease. This course also examines the science behind mitigation and adaptation proposals.

Subjects

climate change | climate change | climate model | climate model | solar variability | solar variability | orbital mechanics | orbital mechanics | greenhouse gases | greenhouse gases | atmospheric circulation | atmospheric circulation | oceanic circulation | oceanic circulation | volcanic aerosols | volcanic aerosols | soil aerosols | soil aerosols | precipitation | precipitation | vegetation | vegetation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Climate change and two concepts of liberty

Description

The final lecture in the series entitled Climate Connections was presented by Dr Myles Allen who currently heads the Climate Dynamics Group in the Department of Physics, University of Oxford. Dr. Allen's latest research addresses the question of how scientific evidence can best be used to inform climate policy. His work has shown that limiting cumulative emissions of carbon dioxide may be a more robust approach to climate change mitigation policy than attempting to define a 'safe' stabilization level for atmospheric greenhouse gases. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

climate change | greenhouse gases | global warming | carbon offsetting | climate change | greenhouse gases | global warming | carbon offsetting

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129040/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Physics of Atmospheres and Oceans (MIT) 12.003 Physics of Atmospheres and Oceans (MIT)

Description

The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data. The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data.

Subjects

1. Characteristics of the atmosphere | 1. Characteristics of the atmosphere | Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | global energy balance | greenhouse effect | greenhouse effect | greenhouse gases | greenhouse gases | Atmospheric layers | Atmospheric layers | pressure and density | pressure and density | Convection | Convection | adiabatic lapse rate | adiabatic lapse rate | Humidity | Humidity | Convective clouds | Convective clouds | Temperature | Temperature | Pressure and geopotential height | Pressure and geopotential height | Winds | Winds | Fluids in motion | Fluids in motion | Hydrostatic balance | Hydrostatic balance | Incompressible flow | Incompressible flow | compressible flow | compressible flow | radial inflow | radial inflow | Geostrophic motion | Geostrophic motion | Taylor-Proudman Theorem | Taylor-Proudman Theorem | Ekman layer | Ekman layer | Coriolis force | Coriolis force | Rossby number | Rossby number | Hadley circulation | Hadley circulation | ocean | ocean | seawater | seawater | salinity | salinity | geostrophic and hydrostatic balance | geostrophic and hydrostatic balance | inhomogeneity | inhomogeneity | Abyssal circulation | Abyssal circulation | thermohaline circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Atmosphere, Ocean and Climate Dynamics (MIT) 12.003 Atmosphere, Ocean and Climate Dynamics (MIT)

Description

Includes audio/video content: AV special element video. This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall. Includes audio/video content: AV special element video. This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.

Subjects

1. Characteristics of the atmosphere | 1. Characteristics of the atmosphere | Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | global energy balance | greenhouse effect | greenhouse effect | greenhouse gases | greenhouse gases | Atmospheric layers | Atmospheric layers | pressure and density | pressure and density | Convection | Convection | adiabatic lapse rate | adiabatic lapse rate | Humidity | Humidity | Convective clouds | Convective clouds | Temperature | Temperature | Pressure and geopotential height | Pressure and geopotential height | Winds | Winds | Fluids in motion | Fluids in motion | Hydrostatic balance | Hydrostatic balance | Incompressible flow | Incompressible flow | compressible flow | compressible flow | radial inflow | radial inflow | Geostrophic motion | Geostrophic motion | Taylor-Proudman Theorem | Taylor-Proudman Theorem | Ekman layer | Ekman layer | Coriolis force | Coriolis force | Rossby number | Rossby number | Hadley circulation | Hadley circulation | ocean | ocean | seawater | seawater | salinity | salinity | geostrophic and hydrostatic balance | geostrophic and hydrostatic balance | inhomogeneity | inhomogeneity | Abyssal circulation | Abyssal circulation | thermohaline circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.84J Atmospheric Chemistry (MIT) 1.84J Atmospheric Chemistry (MIT)

Description

This course provides a detailed overview of the chemical transformations that control the abundances of key trace species in the Earth's atmosphere. Emphasizes the effects of human activity on air quality and climate. Topics include photochemistry, kinetics, and thermodynamics important to the chemistry of the atmosphere; stratospheric ozone depletion; oxidation chemistry of the troposphere; photochemical smog; aerosol chemistry; and sources and sinks of greenhouse gases and other climate forcers. This course provides a detailed overview of the chemical transformations that control the abundances of key trace species in the Earth's atmosphere. Emphasizes the effects of human activity on air quality and climate. Topics include photochemistry, kinetics, and thermodynamics important to the chemistry of the atmosphere; stratospheric ozone depletion; oxidation chemistry of the troposphere; photochemical smog; aerosol chemistry; and sources and sinks of greenhouse gases and other climate forcers.

Subjects

Photochemistry | Photochemistry | specstrocopy | specstrocopy | chemical kinetics | chemical kinetics | stratospheric chemistry | stratospheric chemistry | tropospheric chemistry | tropospheric chemistry | reactive nitrogen chemistry | reactive nitrogen chemistry | oxidized chemistry | oxidized chemistry | aerosol chemistry | aerosol chemistry | atmospheric aqueous chemistry | atmospheric aqueous chemistry | climate change | climate change | acid rain | acid rain | ozone pollution | ozone pollution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.340 Global Warming Science (MIT)

Description

This course provides students with a scientific foundation of anthropogenic climate change and an introduction to climate models. It focuses on fundamental physical processes that shape climate (e.g. solar variability, orbital mechanics, greenhouse gases, atmospheric and oceanic circulation, and volcanic and soil aerosols) and on evidence for past and present climate change. During the course they discuss material consequences of climate change, including sea level change, variations in precipitation, vegetation, storminess, and the incidence of disease. This course also examines the science behind mitigation and adaptation proposals.

Subjects

climate change | climate model | solar variability | orbital mechanics | greenhouse gases | atmospheric circulation | oceanic circulation | volcanic aerosols | soil aerosols | precipitation | vegetation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

General Chemistry 1B. Lecture 11. Global Warming: Why, When, and How

Description

UCI Chem 1B General Chemistry (Winter 2013) Lec 11. General Chemistry Global Warming -- Why, When, and How -- View the complete course: http://ocw.uci.edu/courses/chem_1b_general_chemistry.html Instructor: Donald R. Blake, Ph.D. License: Creative Commons BY-NC-SA Terms of Use: http://ocw.uci.edu/info. More courses at http://ocw.uci.edu Description: UCI Chem 1B is the second quarter of General Chemistry and covers the following topics: properties of gases, liquids, solids; changes of state; properties of solutions; stoichiometry; thermochemistry; and thermodynamics. General Chemistry (Chem 1B) is part of OpenChem: http://ocw.uci.edu/collections/open_chemistry.html This video is part of a 17-lecture undergraduate-level course titled "General Chemistry" taught at UC Irvine by Professor Donald R. Blake. Recorded on February 19, 2013. Index of Topics: 0:01:26 Global Warming Theory 0:05:11 Why should we care? 0:18:56 Sun's Radiation Hitting Earth 0:20:34 Solar Terrestrial Radiation 0:23:09 What Makes a Gas a Greenhouse Gas 0:27:59 Sherry Rowland's Hand-Drawn Radiance Graph 0:31:32 Solar Radiation Hitting the Atmosphere 0:36:18 Sherry Rowland's Radiance Graph 0:37:38 What about the greenhouse gases & aerosols 0:41:06 Global Fossil-Fuel CO2 Annual Emissions 0:42:27 An Atlas of Pollution 0:43:42 Per Capita CO2 Emissions 0:44:05 Cumulative CO2 Emissions 0:45:31 Atmospheric CO2 at Mauna Loa Observatory 0:46:50 CO2, CH4, and Estimated Global Temperature 0:49:50 Paleoclimate Temperature Change 0:51:04 Temperature Change Consistent with Greenhouse Gases? 0:52:36 Increasing Melt Area on Greenland 0:54:12 Sea Ice Area 0:55:32 What Causes Sea Level Rise? 1:00:41 Myths or Spin 1:02:27 Infinity Pool Analogy 1:04:22 Fred Singer 1:05:02 Latest Global Temperature Data 1:06:13 Global Cooling 1:07:49 Ozone was the 80's AGW Required attribution: Blake, Donald R. General Chemistry 1B (UCI OpenCourseWare: University of California, Irvine), http://ocw.uci.edu/courses/chem_1b_general_chemistry.html. [Access date]. License: Creative Commons Attribution-ShareAlike 3.0 United States License. (http://creativecommons.org/licenses/by-sa/3.0/us/deed.en_US)

Subjects

License

http://creativecommons.org/licenses/by-sa/3.0/

Site sourced from

http://www.youtube.com/user/UCIrvineOCW

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Environment. Treading lightly on the Earth

Description

This unit focuses on the problem of green-house gas emissions, especially carbon dioxide, and explore what you can do to lighten those emissions to help reduce the rate of climate change.

Subjects

geesoer ukoer climate change greenhouse gases | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Physics of Atmospheres and Oceans (MIT)

Description

The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data.

Subjects

1. Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | greenhouse effect | greenhouse gases | Atmospheric layers | pressure and density | Convection | adiabatic lapse rate | Humidity | Convective clouds | Temperature | Pressure and geopotential height | Winds | Fluids in motion | Hydrostatic balance | Incompressible flow | compressible flow | radial inflow | Geostrophic motion | Taylor-Proudman Theorem | Ekman layer | Coriolis force | Rossby number | Hadley circulation | ocean | seawater | salinity | geostrophic and hydrostatic balance | inhomogeneity | Abyssal circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.84J Atmospheric Chemistry (MIT)

Description

This course provides a detailed overview of the chemical transformations that control the abundances of key trace species in the Earth's atmosphere. Emphasizes the effects of human activity on air quality and climate. Topics include photochemistry, kinetics, and thermodynamics important to the chemistry of the atmosphere; stratospheric ozone depletion; oxidation chemistry of the troposphere; photochemical smog; aerosol chemistry; and sources and sinks of greenhouse gases and other climate forcers.

Subjects

Photochemistry | specstrocopy | chemical kinetics | stratospheric chemistry | tropospheric chemistry | reactive nitrogen chemistry | oxidized chemistry | aerosol chemistry | atmospheric aqueous chemistry | climate change | acid rain | ozone pollution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Atmosphere, Ocean and Climate Dynamics (MIT)

Description

This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.

Subjects

1. Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | greenhouse effect | greenhouse gases | Atmospheric layers | pressure and density | Convection | adiabatic lapse rate | Humidity | Convective clouds | Temperature | Pressure and geopotential height | Winds | Fluids in motion | Hydrostatic balance | Incompressible flow | compressible flow | radial inflow | Geostrophic motion | Taylor-Proudman Theorem | Ekman layer | Coriolis force | Rossby number | Hadley circulation | ocean | seawater | salinity | geostrophic and hydrostatic balance | inhomogeneity | Abyssal circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata