Searching for materials : 5002 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

3.012 Fundamentals of Materials Science (MIT) 3.012 Fundamentals of Materials Science (MIT)

Description

This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and stability of materials. Quantum mechanical descriptions of interacting electrons and atoms. Symmetry properties of molecules and solids. Structure of complex and disordered materials. Introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to molecular models of materials. Develops basis for understanding a broad range of materials phenomena, from heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism. Fundamentals are taught using real-world examples such as engineered all This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and stability of materials. Quantum mechanical descriptions of interacting electrons and atoms. Symmetry properties of molecules and solids. Structure of complex and disordered materials. Introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to molecular models of materials. Develops basis for understanding a broad range of materials phenomena, from heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism. Fundamentals are taught using real-world examples such as engineered all

Subjects

fundamentals of bonding | energetics | and structure | fundamentals of bonding | energetics | and structure | Quantum mechanical descriptions of interacting electrons and atoms | Quantum mechanical descriptions of interacting electrons and atoms | Symmetry properties of molecules and solids | Symmetry properties of molecules and solids | complex and disordered materials | complex and disordered materials | thermodynamic functions | thermodynamic functions | equilibrium properties | equilibrium properties | macroscopic behavior | macroscopic behavior | molecular models | molecular models | heat capacities | heat capacities | phase transformations | phase transformations | multiphase equilibria | multiphase equilibria | chemical reactions | chemical reactions | magnetism | magnetism | engineered alloys | engineered alloys | electronic and magnetic materials | electronic and magnetic materials | ionic and network solids | ionic and network solids | polymers | polymers | biomaterials | biomaterials | energetics | energetics | structure | structure | materials science | materials science | electrons | electrons | silicon | silicon | DNA | DNA | electronic bonding | electronic bonding | energy | energy | stability | stability | quantum mechanics | quantum mechanics | atoms | atoms | interactions | interactions | symmetry | symmetry | molecules | molecules | solids | solids | complex material | complex material | disorderd materials | disorderd materials | thermodynamic laws | thermodynamic laws | electronic materials | electronic materials | magnetic materials | magnetic materials | ionic solids | ionic solids | network solids | network solids | statistical mechanics | statistical mechanics | microstates | microstates | microscopic complexity | microscopic complexity | entropy | entropy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.016 Mathematics for Materials Scientists and Engineers (MIT) 3.016 Mathematics for Materials Scientists and Engineers (MIT)

Description

The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site. The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site.

Subjects

energetics | energetics | materials structure and symmetry: applied fields | materials structure and symmetry: applied fields | mechanics and physics of solids and soft materials | mechanics and physics of solids and soft materials | linear algebra | linear algebra | orthonormal basis | orthonormal basis | eigenvalues | eigenvalues | eigenvectors | eigenvectors | quadratic forms | quadratic forms | tensor operations | tensor operations | symmetry operations | symmetry operations | calculus | calculus | complex analysis | complex analysis | differential equations | differential equations | theory of distributions | theory of distributions | fourier analysis | fourier analysis | random walks | random walks | mathematical technicques | mathematical technicques | materials science | materials science | materials engineering | materials engineering | materials structure | materials structure | symmetry | symmetry | applied fields | applied fields | materials response | materials response | solids mechanics | solids mechanics | solids physics | solids physics | soft materials | soft materials | multi-variable calculus | multi-variable calculus | ordinary differential equations | ordinary differential equations | partial differential equations | partial differential equations | applied mathematics | applied mathematics | mathematical techniques | mathematical techniques

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.032 Mechanical Behavior of Materials (MIT) 3.032 Mechanical Behavior of Materials (MIT)

Description

Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, and fracture of materials including crystalline and amorphous metals, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. Integrated laboratories provide the opportunity to explore these concepts through hands-on experiments including instrumentation of pressure vessels, visualization of atomistic deformation in bubble rafts, nanoindentation, and uniaxial mechanical testing, as well as writing assignments to communicate th Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, and fracture of materials including crystalline and amorphous metals, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. Integrated laboratories provide the opportunity to explore these concepts through hands-on experiments including instrumentation of pressure vessels, visualization of atomistic deformation in bubble rafts, nanoindentation, and uniaxial mechanical testing, as well as writing assignments to communicate th

Subjects

Basic concepts of solid mechanics and mechanical behavior of materials | Basic concepts of solid mechanics and mechanical behavior of materials | stress-strain relationships | stress-strain relationships | stress transformation | stress transformation | elasticity | elasticity | plasticity and fracture. Case studies include materials selection for bicycle frames | plasticity and fracture. Case studies include materials selection for bicycle frames | stress shielding in biomedical implants; residual stresses in thin films; and ancient materials. Lab experiments and demonstrations give hands-on experience of the physical concepts at a variety of length scales. Use of facilities for measuring mechanical properties including standard mechanical tests | stress shielding in biomedical implants; residual stresses in thin films; and ancient materials. Lab experiments and demonstrations give hands-on experience of the physical concepts at a variety of length scales. Use of facilities for measuring mechanical properties including standard mechanical tests | bubble raft models | bubble raft models | atomic force microscopy and nanoindentation. | atomic force microscopy and nanoindentation. | plasticity and fracture | plasticity and fracture | Case studies | Case studies | materials selection | materials selection | bicycle frames | bicycle frames | stress shielding in biomedical implants | stress shielding in biomedical implants | residual stresses in thin films | residual stresses in thin films | ancient materials | ancient materials | standard mechanical tests | standard mechanical tests | solid mechanics | solid mechanics | mechanical behavior of materials | mechanical behavior of materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Materials Science and Engineering Materials Science and Engineering

Description

In this subject, it is intended that students learn the basics of materials science, the classification of the various families of materials, their properties and applications, and the technology available for the improvement of their properties. In this subject, it is intended that students learn the basics of materials science, the classification of the various families of materials, their properties and applications, and the technology available for the improvement of their properties.

Subjects

materials science | materials science | ceramic materials | ceramic materials | mechanical properties | mechanical properties | families of materials | families of materials | phase diagrams | phase diagrams | materails science and engineering | materails science and engineering | a Mecnica | a Mecnica | functional properties | functional properties | a Metalrgica | a Metalrgica | composite materials | composite materials | structure of materials | structure of materials | a Elctrica | a Elctrica | metallic materials | metallic materials | 2010 | 2010 | polymeric materials | polymeric materials | bonding in solids | bonding in solids | a Electrnica Industrial y Automtica | a Electrnica Industrial y Automtica

License

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/

Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.002 Mechanics and Materials II (MIT) 2.002 Mechanics and Materials II (MIT)

Description

This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design. This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design.

Subjects

beam bending | beam bending | buckling | buckling | vibration | vibration | polymers | polymers | viscoelasticity | viscoelasticity | strength | strength | ductility | ductility | stress | stress | stress concentration | stress concentration | sheet bending | sheet bending | heat treatment | heat treatment | fracture | fracture | plasticity | plasticity | creep | creep | fatigue | fatigue | solid materials | solid materials | mechanical loading | mechanical loading | thermal loading | thermal loading | design-limiting behavior | design-limiting behavior | stiffness | stiffness | toughness | toughness | durability | durability | engineering materials | engineering materials | materials-limiting problem | materials-limiting problem | materials selection | materials selection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.016 Mathematics for Materials Scientists and Engineers (MIT) 3.016 Mathematics for Materials Scientists and Engineers (MIT)

Description

This course covers the mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from the materials science and engineering core courses (3.012 and 3.014) to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, and fourier analysis. Users may find additional or updated materials at Professor C This course covers the mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from the materials science and engineering core courses (3.012 and 3.014) to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, and fourier analysis. Users may find additional or updated materials at Professor C

Subjects

energetics | energetics | visualization | visualization | graph | graph | plot | plot | chart | chart | materials science | materials science | DMSE | DMSE | structure | structure | symmetry | symmetry | mechanics | mechanics | physicss | physicss | solids and soft materials | solids and soft materials | linear algebra | linear algebra | orthonormal basis | orthonormal basis | eigenvalue | eigenvalue | eigenvector | eigenvector | quadratic form | quadratic form | tensor operation | tensor operation | symmetry operation | symmetry operation | calculus | calculus | complex analysis | complex analysis | differential equations | differential equations | ODE | ODE | solution | solution | vector | vector | matrix | matrix | determinant | determinant | theory of distributions | theory of distributions | fourier analysis | fourier analysis | random walk | random walk | Mathematica | Mathematica | simulation | simulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.441 Biomaterials-Tissue Interactions (BE.441) (MIT) 20.441 Biomaterials-Tissue Interactions (BE.441) (MIT)

Description

This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to

Subjects

medical implants | medical implants | artificial organs | artificial organs | tissue engineering | tissue engineering | matrix | matrix | biomaterials | biomaterials | protein adsorption | protein adsorption | unit cell process | unit cell process | wound healing | wound healing | tissue remodeling | tissue remodeling | tissue regeneration | tissue regeneration | organ regeneration | organ regeneration | prosthesis | prosthesis | biodegradable | biodegradable | bioreplaceable implants | bioreplaceable implants | BE.441 | BE.441 | 2.79 | 2.79 | 3.96 | 3.96 | HST.522 | HST.522

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.441 Biomaterials-Tissue Interactions (MIT) BE.441 Biomaterials-Tissue Interactions (MIT)

Description

This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to

Subjects

medical implants | medical implants | artificial organs | artificial organs | tissue engineering | tissue engineering | matrix | matrix | biomaterials | biomaterials | protein adsorption | protein adsorption | unit cell process | unit cell process | wound healing | wound healing | tissue remodeling | tissue remodeling | tissue regeneration | tissue regeneration | organ regeneration | organ regeneration | prosthesis | prosthesis | biodegradable | biodegradable | bioreplaceable implants | bioreplaceable implants | 2.79J | 2.79J | 3.96J | 3.96J | HST.522J | HST.522J | 2.79 | 2.79 | 3.96 | 3.96 | HST.522 | HST.522

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Biomaterials Chemistry (MIT) Biomaterials Chemistry (MIT)

Description

This course covers principles of materials chemistry common to organic materials ranging from biological polypeptides to engineered block copolymers. Topics include molecular structure, polymer synthesis reactions, protein-protein interactions, multifunctional organic materials including polymeric nanoreactors, conducting polymers and virus-mediated biomineralization. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the ma This course covers principles of materials chemistry common to organic materials ranging from biological polypeptides to engineered block copolymers. Topics include molecular structure, polymer synthesis reactions, protein-protein interactions, multifunctional organic materials including polymeric nanoreactors, conducting polymers and virus-mediated biomineralization. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the ma

Subjects

polymeric nanoreactors | polymeric nanoreactors | virus-mediated biomineralization | virus-mediated biomineralization | conducting polymers | conducting polymers | biomaterials chemistry | biomaterials chemistry | organic materials | organic materials | polypeptides | polypeptides | block copolymers | block copolymers | polymer synthesis | polymer synthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.094 Materials in Human Experience (MIT) 3.094 Materials in Human Experience (MIT)

Description

This course examines the ways in which people in ancient and contemporary societies have selected, evaluated, and used materials of nature, transforming them to objects of material culture. Some examples are: glass in ancient Egypt and Rome; sounds and colors of powerful metals in Mesoamerica; cloth and fiber technologies in the Inca empire. It also explores ideological and aesthetic criteria often influential in materials development. Laboratory/workshop sessions provide hands-on experience with materials discussed in class. This course complements 3.091. This course examines the ways in which people in ancient and contemporary societies have selected, evaluated, and used materials of nature, transforming them to objects of material culture. Some examples are: glass in ancient Egypt and Rome; sounds and colors of powerful metals in Mesoamerica; cloth and fiber technologies in the Inca empire. It also explores ideological and aesthetic criteria often influential in materials development. Laboratory/workshop sessions provide hands-on experience with materials discussed in class. This course complements 3.091.

Subjects

ancient and contemporary societies | ancient and contemporary societies | materials of nature | materials of nature | objects of material culture | objects of material culture | glass | glass | ancient Egypt and Rome | ancient Egypt and Rome | metals | metals | Mesoamerica | Mesoamerica | cloth and fiber technologies | cloth and fiber technologies | the Inca empire | the Inca empire | ideological and aesthetic criteria | ideological and aesthetic criteria | materials development | materials development | ancient glass | ancient glass | ancient Andean metallurgy | ancient Andean metallurgy | rubber processing | rubber processing | materials processing | materials processing | materials engineering | materials engineering | pre-modern technology | pre-modern technology | ceramics | ceramics | fibers | fibers | ideology | ideology | values | values | anthropology | anthropology | archaeology | archaeology | history | history | culture | culture

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.45 Magnetic Materials (MIT) 3.45 Magnetic Materials (MIT)

Description

This course will cover the following topics: Magnetostatics Origin of magnetism in materials Magnetic domains and domain walls Magnetic anisotropy Reversible and irreversible magnetization processes Hard and soft magnetic materials Magnetic recording Special topics include magnetism of thin films, surfaces and fine particles; transport in ferromagnets, magnetoresistive sensors, and amorphous magnetic materials. This course will cover the following topics: Magnetostatics Origin of magnetism in materials Magnetic domains and domain walls Magnetic anisotropy Reversible and irreversible magnetization processes Hard and soft magnetic materials Magnetic recording Special topics include magnetism of thin films, surfaces and fine particles; transport in ferromagnets, magnetoresistive sensors, and amorphous magnetic materials.

Subjects

Magnetostatics; magnetism; magnetic domains and domain walls; magnetic anisotropy; reversible and irreversible magnetization; hard and soft magnetic materials; magnetic recording; thin films; ferromagnets | Magnetostatics; magnetism; magnetic domains and domain walls; magnetic anisotropy; reversible and irreversible magnetization; hard and soft magnetic materials; magnetic recording; thin films; ferromagnets | magnetoresistive sensors; amorphous magnetic materials | magnetoresistive sensors; amorphous magnetic materials | Magnetostatics | Magnetostatics | magnetism | magnetism | magnetic domains and domain walls | magnetic domains and domain walls | magnetic anisotropy | magnetic anisotropy | reversible and irreversible magnetization | reversible and irreversible magnetization | hard and soft magnetic materials | hard and soft magnetic materials | magnetic recording | magnetic recording | thin films | thin films | ferromagnets | magnetoresistive sensors | ferromagnets | magnetoresistive sensors | amorphous magnetic materials | amorphous magnetic materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.441J Biomaterials-Tissue Interactions (MIT) 20.441J Biomaterials-Tissue Interactions (MIT)

Description

This course covers the principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. Mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Tissue and organ regeneration. Design of implants and prostheses based on control of biomaterials-tissue interactions. Comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to case studies. Criteria for restoration of physiological funct This course covers the principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. Mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Tissue and organ regeneration. Design of implants and prostheses based on control of biomaterials-tissue interactions. Comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to case studies. Criteria for restoration of physiological funct

Subjects

20.441 | 20.441 | 2.79 | 2.79 | 3.96 | 3.96 | HST.522 | HST.522 | medical implants | medical implants | tissue engineering | tissue engineering | unit cell process | unit cell process | wound healing | wound healing | joint replacement | joint replacement | extracellular matrix | extracellular matrix | biocompatibility | biocompatibility

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (MIT) 20.462J Molecular Principles of Biomaterials (MIT)

Description

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces. This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subjects

biomaterials | biomaterials | biomaterial engineering | biomaterial engineering | biotechnology | biotechnology | cell-guiding surface | cell-guiding surface | molecular biomaterials | molecular biomaterials | drug release | drug release | polymers | polymers | pulsatile release | pulsatile release | polymerization | polymerization | polyer erosion | polyer erosion | tissue engineering | tissue engineering | hydrogels | hydrogels | adhesion | adhesion | migration | migration | drug diffusion | drug diffusion | molecular switches | molecular switches | molecular motors | molecular motors | nanoparticles | nanoparticles | microparticles | microparticles | vaccines | vaccines | drug targeting | drug targeting | micro carriers | micro carriers | nano carriers | nano carriers | intracellular drug delivery | intracellular drug delivery | 20.462 | 20.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Cell-material Crosstalk: Engineering Cell-Instructive Biomaterials (MIT) 7.342 Cell-material Crosstalk: Engineering Cell-Instructive Biomaterials (MIT)

Description

Biomaterials are substances that have been designed to direct the course of any therapeutic or diagnostic procedure by controlling interactions with biological systems. A large toolbox of non-biological materials has been engineered to study cell behavior at the cell-material interface. In this course, we will examine how this interface can be leveraged to study cellular systems and generate novel therapeutics. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong int Biomaterials are substances that have been designed to direct the course of any therapeutic or diagnostic procedure by controlling interactions with biological systems. A large toolbox of non-biological materials has been engineered to study cell behavior at the cell-material interface. In this course, we will examine how this interface can be leveraged to study cellular systems and generate novel therapeutics. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong int

Subjects

Biomaterials | Biomaterials | cell-material interface | cell-material interface | biology | biology | engineering | engineering | cell behavior | cell behavior | substrate materials | substrate materials | biological processes | biological processes | nonbiological materials | nonbiological materials | Mechanobiology | Mechanobiology | Biomimetic signaling | Biomimetic signaling | Nanoparticles | Nanoparticles

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.14 Materials in Nuclear Engineering (MIT) 22.14 Materials in Nuclear Engineering (MIT)

Description

In this course, we will lay the foundation for understanding how materials behave in nuclear systems. In particular, we will build on a solid base of nuclear material fundamentals in order to understand radiation damage and effects in fuels and structural materials. This course consists of a series of directed readings, lectures on video, problem sets, short research projects, and class discussions with worked examples. We will start with an overview of nuclear materials, where they are found in nuclear systems, and how they fail. We will then develop the formalism in crystallography as a common language for materials scientists everywhere. This will be followed by the development of phase diagrams from thermodynamics, which predict how binary alloy systems evolve towards equilibrium. Then In this course, we will lay the foundation for understanding how materials behave in nuclear systems. In particular, we will build on a solid base of nuclear material fundamentals in order to understand radiation damage and effects in fuels and structural materials. This course consists of a series of directed readings, lectures on video, problem sets, short research projects, and class discussions with worked examples. We will start with an overview of nuclear materials, where they are found in nuclear systems, and how they fail. We will then develop the formalism in crystallography as a common language for materials scientists everywhere. This will be followed by the development of phase diagrams from thermodynamics, which predict how binary alloy systems evolve towards equilibrium. Then

Subjects

radiation materials science | radiation materials science | radiation damage to materials | radiation damage to materials | radiation induced segregation | radiation induced segregation | void swelling | void swelling | radiation induced hardening | radiation induced hardening | radiation induced embrittlement | radiation induced embrittlement | nuclear power plant | nuclear power plant | phase diagram | phase diagram | defects | defects | deformation | deformation | radiation effects | radiation effects | irradiation | irradiation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.012 Fundamentals of Materials Science (MIT)

Description

This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and stability of materials. Quantum mechanical descriptions of interacting electrons and atoms. Symmetry properties of molecules and solids. Structure of complex and disordered materials. Introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to molecular models of materials. Develops basis for understanding a broad range of materials phenomena, from heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism. Fundamentals are taught using real-world examples such as engineered all

Subjects

fundamentals of bonding | energetics | and structure | Quantum mechanical descriptions of interacting electrons and atoms | Symmetry properties of molecules and solids | complex and disordered materials | thermodynamic functions | equilibrium properties | macroscopic behavior | molecular models | heat capacities | phase transformations | multiphase equilibria | chemical reactions | magnetism | engineered alloys | electronic and magnetic materials | ionic and network solids | polymers | biomaterials | energetics | structure | materials science | electrons | silicon | DNA | electronic bonding | energy | stability | quantum mechanics | atoms | interactions | symmetry | molecules | solids | complex material | disorderd materials | thermodynamic laws | electronic materials | magnetic materials | ionic solids | network solids | statistical mechanics | microstates | microscopic complexity | entropy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.016 Mathematics for Materials Scientists and Engineers (MIT)

Description

The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site.

Subjects

energetics | materials structure and symmetry: applied fields | mechanics and physics of solids and soft materials | linear algebra | orthonormal basis | eigenvalues | eigenvectors | quadratic forms | tensor operations | symmetry operations | calculus | complex analysis | differential equations | theory of distributions | fourier analysis | random walks | mathematical technicques | materials science | materials engineering | materials structure | symmetry | applied fields | materials response | solids mechanics | solids physics | soft materials | multi-variable calculus | ordinary differential equations | partial differential equations | applied mathematics | mathematical techniques

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.462J Molecular Principles of Biomaterials (MIT) BE.462J Molecular Principles of Biomaterials (MIT)

Description

Analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, biosensors, and cell-guiding surfaces.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark or trademark of Microsoft Corporation in the U.S Analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, biosensors, and cell-guiding surfaces.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark or trademark of Microsoft Corporation in the U.S

Subjects

Analysis | Analysis | design | design | molecular scale | molecular scale | biological systems | biological systems | biotechnology | biotechnology | biomedical engineering | biomedical engineering | molecular interactions | molecular interactions | synthetic molecules | synthetic molecules | synthesis | synthesis | processing approaches | processing approaches | cell functions | cell functions | materials science | materials science | tissue engineering | tissue engineering | drug delivery | drug delivery | biosensors | biosensors | cell-guiding surfaces | cell-guiding surfaces | 3.962J | 3.962J | BE.462 | BE.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.442 Molecular Structure of Biological Materials (MIT) BE.442 Molecular Structure of Biological Materials (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | protein | hydration | hydration | amino acid | amino acid | ECM | ECM | extracellular matrix | extracellular matrix | peptide | peptide | helix | helix | DNA | DNA | RNA | RNA | biomaterial | biomaterial | biotech | biotech | biotechnology | biotechnology | nanomaterial | nanomaterial | beta-sheet | beta-sheet | beta sheet | beta sheet | molecular structure | molecular structure | bioengineering | bioengineering | silk | silk | biomimetic | biomimetic | self-assembly | self-assembly | keratin | keratin | collagen | collagen | adhesive | adhesive | GFP | GFP | fluorescent | fluorescent | polymer | polymer | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (BE.462J) (MIT) 20.462J Molecular Principles of Biomaterials (BE.462J) (MIT)

Description

Analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, biosensors, and cell-guiding surfaces.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark or trademark of Microsoft Corporation in the U.S Analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, biosensors, and cell-guiding surfaces.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark or trademark of Microsoft Corporation in the U.S

Subjects

Analysis | Analysis | design | design | molecular scale | molecular scale | biological systems | biological systems | biotechnology | biotechnology | biomedical engineering | biomedical engineering | molecular interactions | molecular interactions | synthetic molecules | synthetic molecules | synthesis | synthesis | processing approaches | processing approaches | cell functions | cell functions | materials science | materials science | tissue engineering | tissue engineering | drug delivery | drug delivery | biosensors | biosensors | cell-guiding surfaces | cell-guiding surfaces | BE.462J | BE.462J | BE.462 | BE.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.22 Mechanical Behavior of Materials (MIT) 3.22 Mechanical Behavior of Materials (MIT)

Description

Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications. Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications.

Subjects

Phenomenology | Phenomenology | mechanical behavior | mechanical behavior | material structure | material structure | deformation | deformation | failure | failure | elasticity | elasticity | viscoelasticity | viscoelasticity | plasticity | plasticity | creep | creep | fracture | fracture | fatigue | fatigue | metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | thin films | thin films | carbon nanotubes | carbon nanotubes | battery materials | battery materials | superelastic alloys | superelastic alloys | defect nucleation | defect nucleation | student projects | student projects | viral capsides | viral capsides

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.225 Electronic and Mechanical Properties of Materials (MIT) 3.225 Electronic and Mechanical Properties of Materials (MIT)

Description

This course covers the fundamental concepts that determine the electrical, optical, magnetic and mechanical properties of metals, semiconductors, ceramics and polymers. The roles of bonding, structure (crystalline, defect, energy band and microstructure) and composition in influencing and controlling physical properties are discussed. Also included are case studies drawn from a variety of applications: semiconductor diodes and optical detectors, sensors, thin films, biomaterials, composites and cellular materials, and others. This course covers the fundamental concepts that determine the electrical, optical, magnetic and mechanical properties of metals, semiconductors, ceramics and polymers. The roles of bonding, structure (crystalline, defect, energy band and microstructure) and composition in influencing and controlling physical properties are discussed. Also included are case studies drawn from a variety of applications: semiconductor diodes and optical detectors, sensors, thin films, biomaterials, composites and cellular materials, and others.

Subjects

metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | bonding | bonding | structure | structure | energy band | energy band | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | optical detectors | optical detectors | sensors | sensors | thin films | thin films | biomaterials | biomaterials | cellular materials | cellular materials | magnetism | magnetism | polarity | polarity | viscoelasticity | viscoelasticity | plasticity | plasticity | fracture | fracture | materials selection | materials selection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.051J Materials for Biomedical Applications (MIT) 3.051J Materials for Biomedical Applications (MIT)

Description

This class provides an introduction to the interactions between cells and the surfaces of biomaterials. The course covers: surface chemistry and physics of selected metals, polymers, and ceramics; surface characterization methodology; modification of biomaterials surfaces; quantitative assays of cell behavior in culture; biosensors and microarrays; bulk properties of implants; and acute and chronic response to implanted biomaterials. General topics include biosensors, drug delivery, and tissue engineering. This class provides an introduction to the interactions between cells and the surfaces of biomaterials. The course covers: surface chemistry and physics of selected metals, polymers, and ceramics; surface characterization methodology; modification of biomaterials surfaces; quantitative assays of cell behavior in culture; biosensors and microarrays; bulk properties of implants; and acute and chronic response to implanted biomaterials. General topics include biosensors, drug delivery, and tissue engineering.

Subjects

interactions between proteins | cells and surfaces of biomaterials | interactions between proteins | cells and surfaces of biomaterials | surface chemistry and physics of metals | polymers and ceramics | surface chemistry and physics of metals | polymers and ceramics | Surface characterization methodology | Surface characterization methodology | Quantitative assays of cell behavior in culture | Quantitative assays of cell behavior in culture | Organ replacement therapies | Organ replacement therapies | Acute and chronic response to implanted biomaterials | Acute and chronic response to implanted biomaterials | biosensors | drug delivery and tissue engineering | biosensors | drug delivery and tissue engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata