Searching for mos : 3816 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

12.810 Dynamics of the Atmosphere (MIT) 12.810 Dynamics of the Atmosphere (MIT)

Description

This course begins with a study of the role of dynamics in the general physics of the atmosphere, the consideration of the differences between modeling and approximation, and the observed large-scale phenomenology of the atmosphere. Only then are the basic equations derived in rigorous manner. The equations are then applied to important problems and methodologies in meteorology and climate, with discussions of the history of the topics where appropriate. Problems include the Hadley circulation and its role in the general circulation, atmospheric waves including gravity and Rossby waves and their interaction with the mean flow, with specific applications to the stratospheric quasi-biennial oscillation, tides, the super-rotation of Venus' atmosphere, the generation of atmospheric turbulence This course begins with a study of the role of dynamics in the general physics of the atmosphere, the consideration of the differences between modeling and approximation, and the observed large-scale phenomenology of the atmosphere. Only then are the basic equations derived in rigorous manner. The equations are then applied to important problems and methodologies in meteorology and climate, with discussions of the history of the topics where appropriate. Problems include the Hadley circulation and its role in the general circulation, atmospheric waves including gravity and Rossby waves and their interaction with the mean flow, with specific applications to the stratospheric quasi-biennial oscillation, tides, the super-rotation of Venus' atmosphere, the generation of atmospheric turbulence

Subjects

atmosphere | atmosphere | meteorology | meteorology | climate | climate | Hadley circulation | Hadley circulation | general circulation | general circulation | atmospheric waves | atmospheric waves | Rossby waves | Rossby waves | stationary waves | stationary waves | atmospheric turbulence | atmospheric turbulence

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.815 Atmospheric Radiation (MIT) 12.815 Atmospheric Radiation (MIT)

Description

This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition. This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition.

Subjects

atmospheric radiation | atmospheric radiation | remote sensing | remote sensing | atmospheric physics | atmospheric physics | computer codes | computer codes | Radiative transfer equation | Radiative transfer equation | emission and scattering | emission and scattering | spectroscopy | spectroscopy | Mie theory | Mie theory | numerical solutions | numerical solutions | inverse problems | inverse problems | atmospheric temperature | atmospheric temperature | atmospheric composition | atmospheric composition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.815 Atmospheric Radiation (MIT) 12.815 Atmospheric Radiation (MIT)

Description

This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition. This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition.

Subjects

atmospheric radiation | atmospheric radiation | remote sensing | remote sensing | atmospheric physics | atmospheric physics | computer codes | computer codes | Radiative transfer equation | Radiative transfer equation | emission and scattering | emission and scattering | spectroscopy | spectroscopy | Mie theory | Mie theory | numerical solutions | numerical solutions | inverse problems | inverse problems | atmospheric temperature | atmospheric temperature | atmospheric composition | atmospheric composition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.815 Atmospheric Radiation (MIT) 12.815 Atmospheric Radiation (MIT)

Description

This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition. This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition.

Subjects

atmospheric radiation | atmospheric radiation | remote sensing | remote sensing | atmospheric physics | atmospheric physics | computer codes | computer codes | Radiative transfer equation | Radiative transfer equation | emission and scattering | emission and scattering | spectroscopy | spectroscopy | Mie theory | Mie theory | numerical solutions | numerical solutions | inverse problems | inverse problems | atmospheric temperature | atmospheric temperature | atmospheric composition | atmospheric composition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Physics of Atmospheres and Oceans (MIT) 12.003 Physics of Atmospheres and Oceans (MIT)

Description

The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data. The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and the climate of the Earth. Theoretical discussion focuses on the physical processes involved. Underlying mechanisms are illustrated through laboratory demonstrations, using a rotating table, and through analysis of atmospheric and oceanic data.

Subjects

1. Characteristics of the atmosphere | 1. Characteristics of the atmosphere | Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | global energy balance | greenhouse effect | greenhouse effect | greenhouse gases | greenhouse gases | Atmospheric layers | Atmospheric layers | pressure and density | pressure and density | Convection | Convection | adiabatic lapse rate | adiabatic lapse rate | Humidity | Humidity | Convective clouds | Convective clouds | Temperature | Temperature | Pressure and geopotential height | Pressure and geopotential height | Winds | Winds | Fluids in motion | Fluids in motion | Hydrostatic balance | Hydrostatic balance | Incompressible flow | Incompressible flow | compressible flow | compressible flow | radial inflow | radial inflow | Geostrophic motion | Geostrophic motion | Taylor-Proudman Theorem | Taylor-Proudman Theorem | Ekman layer | Ekman layer | Coriolis force | Coriolis force | Rossby number | Rossby number | Hadley circulation | Hadley circulation | ocean | ocean | seawater | seawater | salinity | salinity | geostrophic and hydrostatic balance | geostrophic and hydrostatic balance | inhomogeneity | inhomogeneity | Abyssal circulation | Abyssal circulation | thermohaline circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 The X in Sex: A Genetic, Medical, and Evolutionary View of the X Chromosome (MIT) 7.342 The X in Sex: A Genetic, Medical, and Evolutionary View of the X Chromosome (MIT)

Description

This course will explore a diverse collection of striking biological phenomena associated with the X chromosome. We will examine the genetic basis and significance of several X-linked mutations. We will also discuss why men are more likely than women to display X-linked traits. We will look at the different mechanisms by which X chromosome gene expression is equalized in mammals, flies, and worms and how these mechanisms can yield unusual phenotypes. Throughout our discussions of the X chromosome we will use both recent and classic primary research papers to learn about this chromosome's fascinating biology. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary researc This course will explore a diverse collection of striking biological phenomena associated with the X chromosome. We will examine the genetic basis and significance of several X-linked mutations. We will also discuss why men are more likely than women to display X-linked traits. We will look at the different mechanisms by which X chromosome gene expression is equalized in mammals, flies, and worms and how these mechanisms can yield unusual phenotypes. Throughout our discussions of the X chromosome we will use both recent and classic primary research papers to learn about this chromosome's fascinating biology. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary researc

Subjects

X chromosome | X chromosome | genetics | genetics | flies | flies | mammals | mammals | worms | worms | sex reversal | sex reversal | dosage compensation | dosage compensation | X-inactivation | X-inactivation | hybrid | hybrid | Haldane's rule | Haldane's rule | drosophila | drosophila | gene | gene | dna | dna | dosage | dosage | pedigree | pedigree | genetic map | genetic map | Thomas Hunt Morgan | Thomas Hunt Morgan | Calvin Bridges | Calvin Bridges | Alfred Sturtevant | Alfred Sturtevant | evolution | evolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ía de los Recursos Naturales ía de los Recursos Naturales

Description

Esta asignatura trata de la gestión de los recursos naturales, sean renovables o no renovables, privados, públicos o comunales. Contrastamos su explotación en equilibrio con diferentes estructuras de mercado con su uso óptimo, utilizando modelos económicos, basados en el análisis matemático y/o gráfico, e ilustramos con casos aplicados. Veremos también soluciones a los fallos de mercado más frecuentes en el ámbito de los recursos naturales. Para aplicaciones prácticas como el análisis coste-beneficio o la contabilidad ambiental es esencial poder valorar monetariamente los recursos, aunque no tengan un precio de mercado; por lo tanto incluimos un capítulo sobre la valoración de bienes ambientales. También trataremos aspectos internacionales relacionados al comercio y los tra Esta asignatura trata de la gestión de los recursos naturales, sean renovables o no renovables, privados, públicos o comunales. Contrastamos su explotación en equilibrio con diferentes estructuras de mercado con su uso óptimo, utilizando modelos económicos, basados en el análisis matemático y/o gráfico, e ilustramos con casos aplicados. Veremos también soluciones a los fallos de mercado más frecuentes en el ámbito de los recursos naturales. Para aplicaciones prácticas como el análisis coste-beneficio o la contabilidad ambiental es esencial poder valorar monetariamente los recursos, aunque no tengan un precio de mercado; por lo tanto incluimos un capítulo sobre la valoración de bienes ambientales. También trataremos aspectos internacionales relacionados al comercio y los tra

Subjects

ía | Sociología y Política Agraria | ía | Sociología y Política Agraria | ía | ía | ía Aplicada | ía Aplicada | objetivos | objetivos | 2009 | 2009 | recursos naturales | recursos naturales

License

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/

Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.003 Atmosphere, Ocean and Climate Dynamics (MIT) 12.003 Atmosphere, Ocean and Climate Dynamics (MIT)

Description

Includes audio/video content: AV special element video. This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall. Includes audio/video content: AV special element video. This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.

Subjects

1. Characteristics of the atmosphere | 1. Characteristics of the atmosphere | Characteristics of the atmosphere | Characteristics of the atmosphere | global energy balance | global energy balance | greenhouse effect | greenhouse effect | greenhouse gases | greenhouse gases | Atmospheric layers | Atmospheric layers | pressure and density | pressure and density | Convection | Convection | adiabatic lapse rate | adiabatic lapse rate | Humidity | Humidity | Convective clouds | Convective clouds | Temperature | Temperature | Pressure and geopotential height | Pressure and geopotential height | Winds | Winds | Fluids in motion | Fluids in motion | Hydrostatic balance | Hydrostatic balance | Incompressible flow | Incompressible flow | compressible flow | compressible flow | radial inflow | radial inflow | Geostrophic motion | Geostrophic motion | Taylor-Proudman Theorem | Taylor-Proudman Theorem | Ekman layer | Ekman layer | Coriolis force | Coriolis force | Rossby number | Rossby number | Hadley circulation | Hadley circulation | ocean | ocean | seawater | seawater | salinity | salinity | geostrophic and hydrostatic balance | geostrophic and hydrostatic balance | inhomogeneity | inhomogeneity | Abyssal circulation | Abyssal circulation | thermohaline circulation | thermohaline circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.812 General Circulation of the Earth's Atmosphere (MIT) 12.812 General Circulation of the Earth's Atmosphere (MIT)

Description

This course examines diagnostic studies of the Earth's atmosphere and discusses their implications for the theory of the structure and general circulation of the Earth's atmosphere. It includes some discussion of the validation and use of general circulation models as atmospheric analogs. This course examines diagnostic studies of the Earth's atmosphere and discusses their implications for the theory of the structure and general circulation of the Earth's atmosphere. It includes some discussion of the validation and use of general circulation models as atmospheric analogs.

Subjects

atmosphere | atmosphere | Eliassen-Palm Theorem | Eliassen-Palm Theorem | Eliassen-Palm flux | Eliassen-Palm flux | eddy fluxes | eddy fluxes | angular momentum | angular momentum | kinetic energy | kinetic energy | potential energy | potential energy | water vapor | water vapor | hydrological cycle | hydrological cycle | energy cycle | energy cycle | heat budget | heat budget | radiation budget | radiation budget | spectral analysis | spectral analysis | zonal mean circulations | zonal mean circulations | mean meridional circulation | mean meridional circulation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.333 Atmospheric and Ocean Circulations (MIT) 12.333 Atmospheric and Ocean Circulations (MIT)

Description

In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss. In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.

Subjects

atmospheric and oceanic phenomena | atmospheric and oceanic phenomena | observations | observations | theoretical interpretations | theoretical interpretations | monsoons | monsoons | El Ni?o | El Ni?o | planetary waves | planetary waves | atmospheric synoptic eddies and fronts | atmospheric synoptic eddies and fronts | gulf stream rings | gulf stream rings | hurricanes | hurricanes | surface and internal gravity waves | surface and internal gravity waves | tides | tides | shallow water gravity waves | shallow water gravity waves | deep water gravity waves | deep water gravity waves | internal gravity waves | internal gravity waves | large-scale motions | large-scale motions | rotating earth | rotating earth | Rossby waves | Rossby waves | planetary scale motions | planetary scale motions | baroclinic instability | baroclinic instability | midlatitude storms | midlatitude storms | equatorial atmosphere | equatorial atmosphere | equatorial ocean | equatorial ocean | southern oscillation | southern oscillation | tropical cyclones | tropical cyclones | typhoons | typhoons

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.950 Atmospheric and Oceanic Modeling (MIT) 12.950 Atmospheric and Oceanic Modeling (MIT)

Description

The numerical methods, formulation and parameterizations used in models of the circulation of the atmosphere and ocean will be described in detail. Widely used numerical methods will be the focus but we will also review emerging concepts and new methods. The numerics underlying a hierarchy of models will be discussed, ranging from simple GFD models to the high-end GCMs. In the context of ocean GCMs, we will describe parameterization of geostrophic eddies, mixing and the surface and bottom boundary layers. In the atmosphere, we will review parameterizations of convection and large scale condensation, the planetary boundary layer and radiative transfer. The numerical methods, formulation and parameterizations used in models of the circulation of the atmosphere and ocean will be described in detail. Widely used numerical methods will be the focus but we will also review emerging concepts and new methods. The numerics underlying a hierarchy of models will be discussed, ranging from simple GFD models to the high-end GCMs. In the context of ocean GCMs, we will describe parameterization of geostrophic eddies, mixing and the surface and bottom boundary layers. In the atmosphere, we will review parameterizations of convection and large scale condensation, the planetary boundary layer and radiative transfer.

Subjects

numerical methods | numerical methods | formulation | formulation | parameterizations | parameterizations | models of the circulation of the atmosphere and ocean | models of the circulation of the atmosphere and ocean | numerics underlying a hierarchy of models | numerics underlying a hierarchy of models | simple GFD models | simple GFD models | high-end GCMs | high-end GCMs | ocean GCMs | ocean GCMs | parameterization of geostrophic eddies | parameterization of geostrophic eddies | mixing | mixing | surface and bottom boundary layers | surface and bottom boundary layers | atmosphere | atmosphere | parameterizations of convection | parameterizations of convection | large scale condensation | large scale condensation | planetary boundary layer | planetary boundary layer | radiative transfer | radiative transfer | finite difference method | finite difference method | Spatial discretization | Spatial discretization | numerical dispersion | numerical dispersion | Series expansion | Series expansion | Time-stepping | Time-stepping | Space-time discretization | Space-time discretization | Shallow water dynamics | Shallow water dynamics | Barotropic models | Barotropic models | Quasi-geostrophic equations | Quasi-geostrophic equations | Quasi-geostrophic models | Quasi-geostrophic models | Eddy parameterization | Eddy parameterization | Vertical coordinates | Vertical coordinates | primitive equations | primitive equations | Boundary layer parameterizations | Boundary layer parameterizations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ñanza y el aprendizaje en las nuevas sociedades

Description

Perspectivas Socioculturales de la Enseñanza y el Aprendizaje en las Nuevas Sociedades es un curso que pretende hacernos reflexionar sobre los cambios que hemos vivido y que seguiremos viviendo en este nuevo milenio e invitarnos a explorar el impacto que tengan estos cambios en los sistemas educativos, con la intención de proponer adaptaciones que podemos hacer para asegurar que estemos logrando lo que tenemos que lograr.

Subjects

Percepciones de nuestro contexto y nivel de eficacia | ¿Qué tan importante es? | ón: ¿Qué es y cómo nos afecta? | én sabe más avanza | ¿Quiénes somos y por qué es importante serlo? | ¿Cómo nos afectan a todos? | íticas públicas: ¿Funciona la reforma educativa? | Respuesta al contexto: mejora continua | ón del sistema educativo: ¿Estamos fracasando? | ¿Cómo enseñamos y aprendemos? | ¿Somos responsables de todo? | Nuestra realidad | ¿Es más difícil ser docente hoy en día? Compartiendo la responsabilidad de educar con toda la sociedad | Generando estrategias para el cambio positivo

License

http://creativecommons.org/licenses/by-nc-sa/2.5/mx/

Site sourced from

http://ocw.itesm.mx/rss/ocw.rss

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ógicos I (2014) ógicos I (2014)

Description

Para definir las dos palabras que dan nombre a esta asignatura recurrimos al diccionario. En él encontramos que una de las acepciones de "material" es, elemento con el cual se hace una obra o se ejerce una profesión. Por lo que se refiere a "dental" significa, relativo a los dientes. Uniendo ambos términos podemos decir que "Materiales dentales" son los elementos necesarios para ejercer la profesión relativa a los dientes, o sea, para ejercer la Odontología. Diversas especialidades de la química y prácticamente todas las ciencias aplicadas de la ingeniería han contribuido a la formación de esta disciplina. El medio biológico se tornará el determinante para el uso de los materiales. Hemos dividido la asignatura en cinco partes. En la primera tratamos los fundamentos de lo Para definir las dos palabras que dan nombre a esta asignatura recurrimos al diccionario. En él encontramos que una de las acepciones de "material" es, elemento con el cual se hace una obra o se ejerce una profesión. Por lo que se refiere a "dental" significa, relativo a los dientes. Uniendo ambos términos podemos decir que "Materiales dentales" son los elementos necesarios para ejercer la profesión relativa a los dientes, o sea, para ejercer la Odontología. Diversas especialidades de la química y prácticamente todas las ciencias aplicadas de la ingeniería han contribuido a la formación de esta disciplina. El medio biológico se tornará el determinante para el uso de los materiales. Hemos dividido la asignatura en cinco partes. En la primera tratamos los fundamentos de lo

Subjects

yeso | yeso | revestimiento | revestimiento | hidrocoloides | hidrocoloides | ía dental y maxilofacial | ía dental y maxilofacial | ía | ía | ímicas | ímicas | éutica dental | éutica dental | ísicas | ísicas | ótesis Dental | ótesis Dental | éter | éter | siliconas | siliconas | Medicina Legal y Forense | Medicina Legal y Forense | ánicas | ánicas | ceras | ceras | ólica | ólica | godiva | godiva | polisulfuros | polisulfuros

License

http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://ocw.um.es/rss

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.810 Dynamics of the Atmosphere (MIT)

Description

This course begins with a study of the role of dynamics in the general physics of the atmosphere, the consideration of the differences between modeling and approximation, and the observed large-scale phenomenology of the atmosphere. Only then are the basic equations derived in rigorous manner. The equations are then applied to important problems and methodologies in meteorology and climate, with discussions of the history of the topics where appropriate. Problems include the Hadley circulation and its role in the general circulation, atmospheric waves including gravity and Rossby waves and their interaction with the mean flow, with specific applications to the stratospheric quasi-biennial oscillation, tides, the super-rotation of Venus' atmosphere, the generation of atmospheric turbulence

Subjects

atmosphere | meteorology | climate | Hadley circulation | general circulation | atmospheric waves | Rossby waves | stationary waves | atmospheric turbulence

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.800 Fluid Dynamics of the Atmosphere and Ocean (MIT) 12.800 Fluid Dynamics of the Atmosphere and Ocean (MIT)

Description

This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. File decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site. This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. File decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site.

Subjects

meteorology | meteorology | climate | climate | oceanography | oceanography | Eulerian and Lagrangian kinematics | Eulerian and Lagrangian kinematics | mass | mass | momentum | momentum | energy | energy | Vorticity | Vorticity | divergence Scaling | divergence Scaling | geostrophic approximation | geostrophic approximation | Ekman layers | Ekman layers | Vortex motion | Vortex motion | fluid dynamics | fluid dynamics | atmospheric science | atmospheric science | physical oceanography | physical oceanography | ocean engineering | ocean engineering | oceans | oceans | fluid flow | fluid flow | conservation equations | conservation equations | vortex flows | vortex flows | circulation | circulation | Earth | Earth | rotation | rotation | GFD kinematics | GFD kinematics | waves | waves | Eulerian kinematics | Eulerian kinematics | Lagrangian kinematics | Lagrangian kinematics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ón y Nutrición Actuales (2008) ón y Nutrición Actuales (2008)

Description

Esta materia pretende ser una introducción a la formación del consumidor en materia de alimentos, nutrición y salud. En este sentido deberemos de conocer los principales grupos de alimentos, su composición bromatológica, sus características y propiedades nutricionales y la repercusión que tienen cuando los ingerimos, sobre la salud de nuestro organismo. Según los grupos de edad y las condiciones fisiológicas de cada uno de nosotros deberemos además de tomarlos en unas determinadas proporciones o raciones, según establecen organismos oficiales nacionales e internacionales, como la Agencia Española de Seguridad Alimentaria y Nutrición y/o la United Sates Drug Administration (USDA) americana en su pirámide nutricional. Además, todo ello, debe de ir acompañado de una activid Esta materia pretende ser una introducción a la formación del consumidor en materia de alimentos, nutrición y salud. En este sentido deberemos de conocer los principales grupos de alimentos, su composición bromatológica, sus características y propiedades nutricionales y la repercusión que tienen cuando los ingerimos, sobre la salud de nuestro organismo. Según los grupos de edad y las condiciones fisiológicas de cada uno de nosotros deberemos además de tomarlos en unas determinadas proporciones o raciones, según establecen organismos oficiales nacionales e internacionales, como la Agencia Española de Seguridad Alimentaria y Nutrición y/o la United Sates Drug Administration (USDA) americana en su pirámide nutricional. Además, todo ello, debe de ir acompañado de una activid

Subjects

ón y Bromatología | ón y Bromatología | ía de Alimentos | ía de Alimentos

License

http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://ocw.um.es/rss

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The meridian sun of liberty; or, the whole rights of man displayed and most accurately defined, in a lecture read at the Philosophical Society in Newcastle, on the 8th of November, 1775, ... To which is now first prefixed, by way of preface, a most important dialogue between the citizen reader, and the author. By T. Spence The meridian sun of liberty; or, the whole rights of man displayed and most accurately defined, in a lecture read at the Philosophical Society in Newcastle, on the 8th of November, 1775, ... To which is now first prefixed, by way of preface, a most important dialogue between the citizen reader, and the author. By T. Spence

Description

ebook version of The meridian sun of liberty; or, the whole rights of man displayed and most accurately defined, in a lecture read at the Philosophical Society in Newcastle, on the 8th of November, 1775, ... To which is now first prefixed, by way of preface, a most important dialogue between the citizen reader, and the author. By T. Spence ebook version of The meridian sun of liberty; or, the whole rights of man displayed and most accurately defined, in a lecture read at the Philosophical Society in Newcastle, on the 8th of November, 1775, ... To which is now first prefixed, by way of preface, a most important dialogue between the citizen reader, and the author. By T. Spence

Subjects

kind | kind | ECCO | ECCO | text | text | CC BY-SA | CC BY-SA

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://www.ota.ox.ac.uk/catalogue/epubfeed.rss

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A poem upon the death of her late sacred majesty Queen Anne, and the most happy and most auspicious accession of his sacred majesty King George. To the imperial crowns of Great Britain, France and Ireland. ... By Mr. Dennis A poem upon the death of her late sacred majesty Queen Anne, and the most happy and most auspicious accession of his sacred majesty King George. To the imperial crowns of Great Britain, France and Ireland. ... By Mr. Dennis

Description

ebook version of A poem upon the death of her late sacred majesty Queen Anne, and the most happy and most auspicious accession of his sacred majesty King George. To the imperial crowns of Great Britain, France and Ireland. ... By Mr. Dennis ebook version of A poem upon the death of her late sacred majesty Queen Anne, and the most happy and most auspicious accession of his sacred majesty King George. To the imperial crowns of Great Britain, France and Ireland. ... By Mr. Dennis

Subjects

kind | kind | ECCO | ECCO | text | text | CC BY-SA | CC BY-SA

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://www.ota.ox.ac.uk/catalogue/epubfeed.rss

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Astrophysics (MIT) Astrophysics (MIT)

Description

Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced

Subjects

black hole | black hole | general relativity | general relativity | astrophysics | astrophysics | cosmology | cosmology | Energy and momentum in flat spacetime | Energy and momentum in flat spacetime | the metric | the metric | curvature of spacetime near rotating and nonrotating centers of attraction | curvature of spacetime near rotating and nonrotating centers of attraction | trajectories and orbits of particles and light | trajectories and orbits of particles and light | elementary models of the Cosmos | elementary models of the Cosmos | Global Positioning System | Global Positioning System | solar system tests of relativity | solar system tests of relativity | descending into a black hole | descending into a black hole | gravitational lensing | gravitational lensing | gravitational waves | gravitational waves | Gravity Probe B | Gravity Probe B | more advanced models of the Cosmos | more advanced models of the Cosmos | spacetime curvature | spacetime curvature | rotating centers of attraction | rotating centers of attraction | nonrotating centers of attraction | nonrotating centers of attraction | event horizon | event horizon | energy | energy | momentum | momentum | flat spacetime | flat spacetime | metric | metric | trajectories | trajectories | orbits | orbits | particles | particles | light | light | elementary | elementary | models | models | cosmos | cosmos | spacetime | spacetime | curvature | curvature | flat | flat | GPS | GPS | gravitational | gravitational | lensing | lensing | waves | waves | rotating | rotating | nonrotating | nonrotating | centers | centers | attraction | attraction | solar system | solar system | tests | tests | relativity | relativity | general | general | advanced | advanced

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.012 Microelectronic Devices and Circuits (MIT) 6.012 Microelectronic Devices and Circuits (MIT)

Description

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits.

Subjects

semiconductor | semiconductor | integrated circuit | integrated circuit | p-n junction | p-n junction | mos | mos | mosfet | mosfet | digital logic | digital logic | nmos | nmos | cmos | cmos | bipolar junction transistor | bipolar junction transistor | single stage amplifier | single stage amplifier | frequency domain analysis | frequency domain analysis | common emitter | common emitter | multistage amplifier | multistage amplifier | intrinsic semiconductors | intrinsic semiconductors | electrons | electrons | holes | holes | carrier transport | carrier transport | 60mV rule | 60mV rule

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.012 Microelectronic Devices and Circuits (MIT) 6.012 Microelectronic Devices and Circuits (MIT)

Description

6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and metal-on-silicon (MOS) devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and metal-on-silicon (MOS) devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits.

Subjects

semiconductor | semiconductor | integrated circuit | integrated circuit | p-n junction | p-n junction | mos | mos | mosfet | mosfet | digital logic | digital logic | nmos | nmos | cmos | cmos | bipolar junction transistor | bipolar junction transistor | single stage amplifier | single stage amplifier | frequency domain analysis | frequency domain analysis | common emitter | common emitter | multistage amplifier | multistage amplifier | intrinsic semiconductors | intrinsic semiconductors | electrons | electrons | holes | holes | carrier transport | carrier transport | 60mV rule | 60mV rule

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.571J Atmospheric Physics and Chemistry (MIT) 10.571J Atmospheric Physics and Chemistry (MIT)

Description

This course provides an introduction to the physics and chemistry of the atmosphere, including experience with computer codes. It is intended for undergraduates and first year graduate students. This course provides an introduction to the physics and chemistry of the atmosphere, including experience with computer codes. It is intended for undergraduates and first year graduate students.

Subjects

physics of the atmosphere | physics of the atmosphere | chemistry of the atmosphere | chemistry of the atmosphere | computer codes | computer codes | Aerosols | Aerosols | Gas | Gas | aerosol transport | aerosol transport | radiation | radiation | emissions | emissions | Emissions control technology | Emissions control technology | air pollution and climate | air pollution and climate

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.803 Quasi-Balanced Circulations in Oceans and Atmospheres (MIT) 12.803 Quasi-Balanced Circulations in Oceans and Atmospheres (MIT)

Description

This course introduces the students to dynamics of large-scale circulations in oceans and atmospheres. Basic concepts include mass and momentum conservation, hydrostatic and geostrophic balance, and pressure and other vertical coordinates. It covers the topics of fundamental conservation and balance principles for large-scale flow, generation and dissipation of quasi-balanced eddies, as well as equilibrated quasi-balanced systems. Examples of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments can be found in the accompaniment laboratory course 12.804, Large-scale Flow Dynamics Lab. This course introduces the students to dynamics of large-scale circulations in oceans and atmospheres. Basic concepts include mass and momentum conservation, hydrostatic and geostrophic balance, and pressure and other vertical coordinates. It covers the topics of fundamental conservation and balance principles for large-scale flow, generation and dissipation of quasi-balanced eddies, as well as equilibrated quasi-balanced systems. Examples of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments can be found in the accompaniment laboratory course 12.804, Large-scale Flow Dynamics Lab.

Subjects

hydrostatic balance | hydrostatic balance | geostrophic balance | geostrophic balance | barotropic vorticity equation | barotropic vorticity equation | shallow water equations | shallow water equations | geostrophic adjustment | geostrophic adjustment | stratified atmospheres and oceans | stratified atmospheres and oceans | thermodynamics | thermodynamics | quasi-geostrophic equations | quasi-geostrophic equations | pseudo potential vorticity | pseudo potential vorticity | Rayleigh | Rayleigh | Fjortoft and Chanrey-Stern theorems | Fjortoft and Chanrey-Stern theorems | frontogenesis | frontogenesis | semigeostrophy. | semigeostrophy.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.820 Turbulence in the Ocean and Atmosphere (MIT) 12.820 Turbulence in the Ocean and Atmosphere (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, boundary layer turbulence, internal waves, two dimensional turbulence, quasi-geostrophic turbulence, and macrotrubulence in the ocean and atmosphere. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, boundary layer turbulence, internal waves, two dimensional turbulence, quasi-geostrophic turbulence, and macrotrubulence in the ocean and atmosphere.

Subjects

phenomena | theory | and modeling of turbulence | phenomena | theory | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal waves

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.820 Turbulence in the Ocean and Atmosphere (MIT) 12.820 Turbulence in the Ocean and Atmosphere (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, quasi-geostrophic turbulence, shallow water turbulence, baroclinic turbulence, macroturbulence in the ocean and atmosphere. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, quasi-geostrophic turbulence, shallow water turbulence, baroclinic turbulence, macroturbulence in the ocean and atmosphere.

Subjects

phenomena | phenomena | theory | theory | and modeling of turbulence | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal waves

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata