Searching for repulsion : 3 results found | RSS Feed for this search

Carbon nanotubes

Description

It is necessary to form a stable dispersion of nanotubes in order to properly integrate them into polymeric systems. This can be achieved by treating them with acid to oxidise the tube surfaces. The tubes will then spontaneously disperse in an aqueous medium. The viscosity of these suspensions is analogous to that of polymers; it increases gradually with concentration up to a critical point (at about 0.7 vol%) where entanglement occurs. However, their separation is determined more by surface repulsions than by entropy arising from chain flexibility. Their stiffness suggests that parallel clusters might be a natural state for aggregation but it also means that any deviations form straightness of the tubes (due to defects) will compromise significant tube parallelism. This image was t

Subjects

carbon | carbon nanotube | dispersion | film | nanotube | order | polymer | suspension | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Particle technology : membranes and colloids

Description

This open educational resource was released through the Higher Education Academy Engineering Subject Centre Open Engineering Resources Pilot project. The project was funded by HEFCE and the JISC/HE Academy UKOER programme.

Subjects

ukoer | engscoer | cc-by | engcetl | loughborough university | higher education | learning | loughboroughunioer | engineering | richard holdich | particles | particle technology | bsc | beng | meng | msc | microfiltration | ultrafiltration | permeate flux | pore size | crossflow filtration | secondary membrane | diafiltration | van der waal | dlvo | repulsion | iso-electric point | colloids | Engineering | H000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Carbon nanotubes

Description

It is necessary to form a stable dispersion of nanotubes in order to properly integrate them into polymeric systems. This can be achieved by treating them with acid to oxidise the tube surfaces. The tubes will then spontaneously disperse in an aqueous medium. The viscosity of these suspensions is analogous to that of polymers; it increases gradually with concentration up to a critical point (at about 0.7 vol%) where entanglement occurs. However, their separation is determined more by surface repulsions than by entropy arising from chain flexibility. Their stiffness suggests that parallel clusters might be a natural state for aggregation but it also means that any deviations form straightness of the tubes (due to defects) will compromise significant tube parallelism. This image was taken us

Subjects

carbon | carbon nanotube | dispersion | film | nanotube | order | polymer | suspension | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata