Searching for surface waves : 14 results found | RSS Feed for this search

1

13.022 Surface Waves and their Interaction With Floating Bodies (MIT) 13.022 Surface Waves and their Interaction With Floating Bodies (MIT)

Description

The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures.Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and their The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures.Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and their

Subjects

floating bodies | floating bodies | offshore platforms | offshore platforms | ships | ships | fluid dynamics | fluid dynamics | surface energy | surface energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.24 Ocean Wave Interaction with Ships and Offshore Energy Systems (13.022) (MIT) 2.24 Ocean Wave Interaction with Ships and Offshore Energy Systems (13.022) (MIT)

Description

The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures. Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and thei The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures. Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and thei

Subjects

floating bodies | floating bodies | offshore platforms | offshore platforms | ships | ships | fluid dynamics | fluid dynamics | surface energy | surface energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.853 Computational Ocean Acoustics (MIT) 13.853 Computational Ocean Acoustics (MIT)

Description

This course examines wave equations for fluid and visco-elastic media, wave-theory formulations of acoustic source radiation and seismo-acoustic propagation in stratified ocean waveguides, and Wavenumber Integration and Normal Mode methods for propagation in plane-stratified media. Also covered are Seismo-Acoustic modeling of seabeds and ice covers, seismic interface and surface waves in a stratified seabed, Parabolic Equation and Coupled Mode approaches to propagation in range-dependent ocean waveguides, numerical modeling of target scattering and reverberation clutter in ocean waveguides, and ocean ambient noise modeling. Students develop propagation models using all the numerical approaches relevant to state-of-the-art acoustic research. This course examines wave equations for fluid and visco-elastic media, wave-theory formulations of acoustic source radiation and seismo-acoustic propagation in stratified ocean waveguides, and Wavenumber Integration and Normal Mode methods for propagation in plane-stratified media. Also covered are Seismo-Acoustic modeling of seabeds and ice covers, seismic interface and surface waves in a stratified seabed, Parabolic Equation and Coupled Mode approaches to propagation in range-dependent ocean waveguides, numerical modeling of target scattering and reverberation clutter in ocean waveguides, and ocean ambient noise modeling. Students develop propagation models using all the numerical approaches relevant to state-of-the-art acoustic research.

Subjects

Wave equations | Wave equations | fluid and visco-elastic media | fluid and visco-elastic media | Wave-theory formulations | Wave-theory formulations | acoustic source radiation | acoustic source radiation | seismo-acoustic propagation | seismo-acoustic propagation | stratified ocean waveguides | stratified ocean waveguides | Wavenumber Integration | Wavenumber Integration | Normal Mode | Normal Mode | propagation in plane-stratified media | propagation in plane-stratified media | Seismo-Acoustic modeling | Seismo-Acoustic modeling | Seismic interface | Seismic interface | surface waves | surface waves | stratified seabed | stratified seabed | Parabolic Equation | Parabolic Equation | Coupled Mode | Coupled Mode | range-dependent ocean waveguides | range-dependent ocean waveguides | Numerical modeling | Numerical modeling | target scattering | target scattering | reverberation clutter | reverberation clutter | Ocean ambient noise modeling | Ocean ambient noise modeling | Fluid media | Fluid media | visco-elastic media | visco-elastic media | plane-stratified media | plane-stratified media | ice covers | ice covers | 2.068 | 2.068

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.016 Hydrodynamics (13.012) (MIT) 2.016 Hydrodynamics (13.012) (MIT)

Description

This course covers the development of the fundamental equations of fluid mechanics and their simplifications for several areas of marine hydrodynamics and the application of these principles to the solution of engineering problems. Topics include the principles of conservation of mass, momentum and energy, lift and drag forces, laminar and turbulent flows, dimensional analysis, added mass, and linear surface waves, including wave velocities, propagation phenomena, and descriptions of real sea waves. Wave forces on structures are treated in the context of design and basic seakeeping analysis of ships and offshore platforms. Geophysical fluid dynamics will also be addressed including distributions of salinity, temperature, and density; heat balance in the ocean; major ocean circulations and This course covers the development of the fundamental equations of fluid mechanics and their simplifications for several areas of marine hydrodynamics and the application of these principles to the solution of engineering problems. Topics include the principles of conservation of mass, momentum and energy, lift and drag forces, laminar and turbulent flows, dimensional analysis, added mass, and linear surface waves, including wave velocities, propagation phenomena, and descriptions of real sea waves. Wave forces on structures are treated in the context of design and basic seakeeping analysis of ships and offshore platforms. Geophysical fluid dynamics will also be addressed including distributions of salinity, temperature, and density; heat balance in the ocean; major ocean circulations and

Subjects

fluid mechanics | fluid mechanics | mass | mass | momentum | momentum | energy | energy | lift | lift | drag | drag | laminar | laminar | turbulent | turbulent | turbulence | turbulence | wave | wave | waves | waves | surface waves | surface waves | current | current | water | water | ocean | ocean | force | force | sea | sea | sea wave | sea wave | ship | ship | propulsion | propulsion | propeller | propeller | fish | fish | swimming | swimming | wind | wind | VIV | VIV | vortex induced vibration | vortex induced vibration | Bernoulli | Bernoulli | D'Allembert | D'Allembert | hydrostatics | hydrostatics | fluid dynamics | fluid dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.20 Marine Hydrodynamics (13.021) (MIT) 2.20 Marine Hydrodynamics (13.021) (MIT)

Description

In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. The various topics covered are: Transport theorem and conservation principles, Navier-Stokes' equation, dimensional analysis, ideal and potential flows, vorticity and Kelvin's theorem, hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory, viscous-fluid flow, laminar and turbulent boundary layers, model testing, scaling laws, application of potential theory to surface waves, energy transport, wave/body forces, linearized theory of lifting surfaces, and experimental project in the towing tank or propeller tunnel.This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.021. In 2005, In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. The various topics covered are: Transport theorem and conservation principles, Navier-Stokes' equation, dimensional analysis, ideal and potential flows, vorticity and Kelvin's theorem, hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory, viscous-fluid flow, laminar and turbulent boundary layers, model testing, scaling laws, application of potential theory to surface waves, energy transport, wave/body forces, linearized theory of lifting surfaces, and experimental project in the towing tank or propeller tunnel.This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.021. In 2005,

Subjects

fundamentals of fluid mechanics | fundamentals of fluid mechanics | naval architecture | naval architecture | ocean science and engineering | ocean science and engineering | transport theorem | transport theorem | conservation principles | conservation principles | Navier-Stokes' equation | Navier-Stokes' equation | dimensional analysis | dimensional analysis | ideal and potential flows | ideal and potential flows | vorticity and Kelvin's theorem | vorticity and Kelvin's theorem | hydrodynamic forces in potential flow | hydrodynamic forces in potential flow | D'Alembert's paradox | D'Alembert's paradox | added-mass | added-mass | slender-body theory. Viscous-fluid flow | slender-body theory. Viscous-fluid flow | laminar and turbulent boundary layers | laminar and turbulent boundary layers | model testing | model testing | scaling laws | scaling laws | application of potential theory to surface waves | application of potential theory to surface waves | energy transport | energy transport | wave/body forces | wave/body forces | linearized theory of lifting surfaces | linearized theory of lifting surfaces | experimental project in the towing tank or propeller tunnel | experimental project in the towing tank or propeller tunnel

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.068 Computational Ocean Acoustics (13.853) (MIT) 2.068 Computational Ocean Acoustics (13.853) (MIT)

Description

This course examines wave equations for fluid and visco-elastic media, wave-theory formulations of acoustic source radiation and seismo-acoustic propagation in stratified ocean waveguides, and Wavenumber Integration and Normal Mode methods for propagation in plane-stratified media. Also covered are Seismo-Acoustic modeling of seabeds and ice covers, seismic interface and surface waves in a stratified seabed, Parabolic Equation and Coupled Mode approaches to propagation in range-dependent ocean waveguides, numerical modeling of target scattering and reverberation clutter in ocean waveguides, and ocean ambient noise modeling. Students develop propagation models using all the numerical approaches relevant to state-of-the-art acoustic research. This course was originally offered in Course 13 ( This course examines wave equations for fluid and visco-elastic media, wave-theory formulations of acoustic source radiation and seismo-acoustic propagation in stratified ocean waveguides, and Wavenumber Integration and Normal Mode methods for propagation in plane-stratified media. Also covered are Seismo-Acoustic modeling of seabeds and ice covers, seismic interface and surface waves in a stratified seabed, Parabolic Equation and Coupled Mode approaches to propagation in range-dependent ocean waveguides, numerical modeling of target scattering and reverberation clutter in ocean waveguides, and ocean ambient noise modeling. Students develop propagation models using all the numerical approaches relevant to state-of-the-art acoustic research. This course was originally offered in Course 13 (

Subjects

Wave equations | Wave equations | fluid and visco-elastic media | fluid and visco-elastic media | Wave-theory formulations | Wave-theory formulations | acoustic source radiation | acoustic source radiation | seismo-acoustic propagation | seismo-acoustic propagation | stratified ocean waveguides | stratified ocean waveguides | Wavenumber Integration | Wavenumber Integration | Normal Mode | Normal Mode | propagation in plane-stratified media | propagation in plane-stratified media | Seismo-Acoustic modeling | Seismo-Acoustic modeling | Seismic interface | Seismic interface | surface waves | surface waves | stratified seabed | stratified seabed | Parabolic Equation | Parabolic Equation | Coupled Mode | Coupled Mode | range-dependent ocean waveguides | range-dependent ocean waveguides | Numerical modeling | Numerical modeling | target scattering | target scattering | reverberation clutter | reverberation clutter | Ocean ambient noise modeling | Ocean ambient noise modeling | Fluid media | Fluid media | visco-elastic media | visco-elastic media | plane-stratified media | plane-stratified media | ice covers | ice covers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.022 Surface Waves and their Interaction With Floating Bodies (MIT)

Description

The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures.Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and their

Subjects

floating bodies | offshore platforms | ships | fluid dynamics | surface energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.24 Ocean Wave Interaction with Ships and Offshore Energy Systems (13.022) (MIT)

Description

The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures. Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and thei

Subjects

floating bodies | offshore platforms | ships | fluid dynamics | surface energy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.021 Marine Hydrodynamics (MIT) 13.021 Marine Hydrodynamics (MIT)

Description

In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. Transport theorem and conservation principles. Navier-Stokes' equation. Dimensional analysis. Ideal and potential flows. Vorticity and Kelvin's theorem. Hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory. Viscous-fluid flow, laminar and turbulent boundary layers. Model testing, scaling laws. Application of potential theory to surface waves, energy transport, wave/body forces. Linearized theory of lifting surfaces. Experimental project in the towing tank or propeller tunnel. In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. Transport theorem and conservation principles. Navier-Stokes' equation. Dimensional analysis. Ideal and potential flows. Vorticity and Kelvin's theorem. Hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory. Viscous-fluid flow, laminar and turbulent boundary layers. Model testing, scaling laws. Application of potential theory to surface waves, energy transport, wave/body forces. Linearized theory of lifting surfaces. Experimental project in the towing tank or propeller tunnel.

Subjects

ocean science | ocean science | naval architecture | naval architecture | fluid mechanics | fluid mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.853 Computational Ocean Acoustics (MIT)

Description

This course examines wave equations for fluid and visco-elastic media, wave-theory formulations of acoustic source radiation and seismo-acoustic propagation in stratified ocean waveguides, and Wavenumber Integration and Normal Mode methods for propagation in plane-stratified media. Also covered are Seismo-Acoustic modeling of seabeds and ice covers, seismic interface and surface waves in a stratified seabed, Parabolic Equation and Coupled Mode approaches to propagation in range-dependent ocean waveguides, numerical modeling of target scattering and reverberation clutter in ocean waveguides, and ocean ambient noise modeling. Students develop propagation models using all the numerical approaches relevant to state-of-the-art acoustic research.

Subjects

Wave equations | fluid and visco-elastic media | Wave-theory formulations | acoustic source radiation | seismo-acoustic propagation | stratified ocean waveguides | Wavenumber Integration | Normal Mode | propagation in plane-stratified media | Seismo-Acoustic modeling | Seismic interface | surface waves | stratified seabed | Parabolic Equation | Coupled Mode | range-dependent ocean waveguides | Numerical modeling | target scattering | reverberation clutter | Ocean ambient noise modeling | Fluid media | visco-elastic media | plane-stratified media | ice covers | 2.068

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.016 Hydrodynamics (13.012) (MIT)

Description

This course covers the development of the fundamental equations of fluid mechanics and their simplifications for several areas of marine hydrodynamics and the application of these principles to the solution of engineering problems. Topics include the principles of conservation of mass, momentum and energy, lift and drag forces, laminar and turbulent flows, dimensional analysis, added mass, and linear surface waves, including wave velocities, propagation phenomena, and descriptions of real sea waves. Wave forces on structures are treated in the context of design and basic seakeeping analysis of ships and offshore platforms. Geophysical fluid dynamics will also be addressed including distributions of salinity, temperature, and density; heat balance in the ocean; major ocean circulations and

Subjects

fluid mechanics | mass | momentum | energy | lift | drag | laminar | turbulent | turbulence | wave | waves | surface waves | current | water | ocean | force | sea | sea wave | ship | propulsion | propeller | fish | swimming | wind | VIV | vortex induced vibration | Bernoulli | D'Allembert | hydrostatics | fluid dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.20 Marine Hydrodynamics (13.021) (MIT)

Description

In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. The various topics covered are: Transport theorem and conservation principles, Navier-Stokes' equation, dimensional analysis, ideal and potential flows, vorticity and Kelvin's theorem, hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory, viscous-fluid flow, laminar and turbulent boundary layers, model testing, scaling laws, application of potential theory to surface waves, energy transport, wave/body forces, linearized theory of lifting surfaces, and experimental project in the towing tank or propeller tunnel.This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.021. In 2005,

Subjects

fundamentals of fluid mechanics | naval architecture | ocean science and engineering | transport theorem | conservation principles | Navier-Stokes' equation | dimensional analysis | ideal and potential flows | vorticity and Kelvin's theorem | hydrodynamic forces in potential flow | D'Alembert's paradox | added-mass | slender-body theory. Viscous-fluid flow | laminar and turbulent boundary layers | model testing | scaling laws | application of potential theory to surface waves | energy transport | wave/body forces | linearized theory of lifting surfaces | experimental project in the towing tank or propeller tunnel

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.068 Computational Ocean Acoustics (13.853) (MIT)

Description

This course examines wave equations for fluid and visco-elastic media, wave-theory formulations of acoustic source radiation and seismo-acoustic propagation in stratified ocean waveguides, and Wavenumber Integration and Normal Mode methods for propagation in plane-stratified media. Also covered are Seismo-Acoustic modeling of seabeds and ice covers, seismic interface and surface waves in a stratified seabed, Parabolic Equation and Coupled Mode approaches to propagation in range-dependent ocean waveguides, numerical modeling of target scattering and reverberation clutter in ocean waveguides, and ocean ambient noise modeling. Students develop propagation models using all the numerical approaches relevant to state-of-the-art acoustic research. This course was originally offered in Course 13 (

Subjects

Wave equations | fluid and visco-elastic media | Wave-theory formulations | acoustic source radiation | seismo-acoustic propagation | stratified ocean waveguides | Wavenumber Integration | Normal Mode | propagation in plane-stratified media | Seismo-Acoustic modeling | Seismic interface | surface waves | stratified seabed | Parabolic Equation | Coupled Mode | range-dependent ocean waveguides | Numerical modeling | target scattering | reverberation clutter | Ocean ambient noise modeling | Fluid media | visco-elastic media | plane-stratified media | ice covers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.021 Marine Hydrodynamics (MIT)

Description

In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. Transport theorem and conservation principles. Navier-Stokes' equation. Dimensional analysis. Ideal and potential flows. Vorticity and Kelvin's theorem. Hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory. Viscous-fluid flow, laminar and turbulent boundary layers. Model testing, scaling laws. Application of potential theory to surface waves, energy transport, wave/body forces. Linearized theory of lifting surfaces. Experimental project in the towing tank or propeller tunnel.

Subjects

ocean science | naval architecture | fluid mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata