Searching for vector : 304 results found | RSS Feed for this search

18.022 Calculus (MIT) 18.022 Calculus (MIT)

Description

This is an undergraduate course on calculus of several variables. It covers all of the topics covered in Calculus II (18.02), but presents them in greater depth. These topics are vector algebra in 3-space, determinants, matrices, vector-valued functions of one variable, space motion, scalar functions of several variables, partial differentiation, gradient, optimization techniques, double integrals, line integrals in the plane, exact differentials, conservative fields, Green's theorem, triple integrals, line and surface integrals in space, the divergence theorem, and Stokes' theorem. Additional topics covered in 18.022 are geometry, vector fields, and linear algebra. This is an undergraduate course on calculus of several variables. It covers all of the topics covered in Calculus II (18.02), but presents them in greater depth. These topics are vector algebra in 3-space, determinants, matrices, vector-valued functions of one variable, space motion, scalar functions of several variables, partial differentiation, gradient, optimization techniques, double integrals, line integrals in the plane, exact differentials, conservative fields, Green's theorem, triple integrals, line and surface integrals in space, the divergence theorem, and Stokes' theorem. Additional topics covered in 18.022 are geometry, vector fields, and linear algebra.Subjects

vector algebra | vector algebra | determinant | determinant | matrix | matrix | matrices | matrices | vector-valued | vector-valued | functions | functions | space motion | space motion | scalar functions | scalar functions | partial differentiation | partial differentiation | gradient | gradient | optimization techniques | optimization techniques | double integrals | double integrals | line integrals | line integrals | exact differentials | exact differentials | conservative fields | conservative fields | Green's theorem | Green's theorem | triple integrals | triple integrals | surface integrals | surface integrals | divergence theorem | divergence theorem | Stokes' theorem | Stokes' theorem | geometry | geometry | vector fields | vector fields | linear algebra | linear algebraLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.02 Multivariable Calculus (MIT) 18.02 Multivariable Calculus (MIT)

Description

Includes audio/video content: AV lectures. This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include vectors and matrices, partial derivatives, double and triple integrals, and vector calculus in 2 and 3-space. MIT OpenCourseWare offers another version of 18.02, from the Spring 2006 term. Both versions cover the same material, although they are taught by different faculty and rely on different textbooks. Multivariable Calculus (18.02) is taught during the Fall and Spring terms at MIT, and is a required subject for all MIT undergraduates. Includes audio/video content: AV lectures. This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include vectors and matrices, partial derivatives, double and triple integrals, and vector calculus in 2 and 3-space. MIT OpenCourseWare offers another version of 18.02, from the Spring 2006 term. Both versions cover the same material, although they are taught by different faculty and rely on different textbooks. Multivariable Calculus (18.02) is taught during the Fall and Spring terms at MIT, and is a required subject for all MIT undergraduates.Subjects

calculus | calculus | calculus of several variables | calculus of several variables | vector algebra | vector algebra | determinants | determinants | matrix | matrix | matrices | matrices | vector-valued function | vector-valued function | space motion | space motion | scalar function | scalar function | partial differentiation | partial differentiation | gradient | gradient | optimization techniques | optimization techniques | double integrals | double integrals | line integrals | line integrals | exact differential | exact differential | conservative fields | conservative fields | Green's theorem | Green's theorem | triple integrals | triple integrals | surface integrals | surface integrals | divergence theorem Stokes' theorem | divergence theorem Stokes' theorem | applications | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is mainly focused on the quantitative aspects of design and presents a unifying framework called "Multidisciplinary System Design Optimization" (MSDO). The objective of the course is to present tools and methodologies for performing system optimization in a multidisciplinary design context, focusing on three aspects of the problem: (i) The multidisciplinary character of engineering systems, (ii) design of these complex systems, and (iii) tools for optimization. There is a version of this course (16.60s) offered through the MIT Professional Institute, targeted at professional engineers. This course is mainly focused on the quantitative aspects of design and presents a unifying framework called "Multidisciplinary System Design Optimization" (MSDO). The objective of the course is to present tools and methodologies for performing system optimization in a multidisciplinary design context, focusing on three aspects of the problem: (i) The multidisciplinary character of engineering systems, (ii) design of these complex systems, and (iii) tools for optimization. There is a version of this course (16.60s) offered through the MIT Professional Institute, targeted at professional engineers.Subjects

optimization | optimization | multidisciplinary design optimization | multidisciplinary design optimization | MDO | MDO | subsystem identification | subsystem identification | interface design | interface design | linear constrained optimization fomulation | linear constrained optimization fomulation | non-linear constrained optimization formulation | non-linear constrained optimization formulation | scalar optimization | scalar optimization | vector optimization | vector optimization | systems engineering | systems engineering | complex systems | complex systems | heuristic search methods | heuristic search methods | tabu search | tabu search | simulated annealing | simulated annealing | genertic algorithms | genertic algorithms | sensitivity | sensitivity | tradeoff analysis | tradeoff analysis | goal programming | goal programming | isoperformance | isoperformance | pareto optimality | pareto optimality | flowchart | flowchart | design vector | design vector | simulation model | simulation model | objective vector | objective vector | input | input | discipline | discipline | output | output | coupling | coupling | multiobjective optimization | multiobjective optimization | optimization algorithms | optimization algorithms | tradespace exploration | tradespace exploration | numerical techniques | numerical techniques | direct methods | direct methods | penalty methods | penalty methods | heuristic techniques | heuristic techniques | SA | SA | GA | GA | approximation methods | approximation methods | sensitivity analysis | sensitivity analysis | isoperformace | isoperformace | output evaluation | output evaluation | MSDO framework | MSDO frameworkLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.823 Computer System Architecture (MIT) 6.823 Computer System Architecture (MIT)

Description

6.823 is a study of the evolution of computer architecture and the factors influencing the design of hardware and software elements of computer systems. Topics may include: instruction set design; processor micro-architecture and pipelining; cache and virtual memory organizations; protection and sharing; I/O and interrupts; in-order and out-of-order superscalar architectures; VLIW machines; vector supercomputers; multithreaded architectures; symmetric multiprocessors; and parallel computers. 6.823 is a study of the evolution of computer architecture and the factors influencing the design of hardware and software elements of computer systems. Topics may include: instruction set design; processor micro-architecture and pipelining; cache and virtual memory organizations; protection and sharing; I/O and interrupts; in-order and out-of-order superscalar architectures; VLIW machines; vector supercomputers; multithreaded architectures; symmetric multiprocessors; and parallel computers.Subjects

computer architecture | | computer architecture | | computer system architecture | | computer system architecture | | hardware | | hardware | | hardware design | | hardware design | | software | | software | | software design | | software design | | instruction set design | | instruction set design | | processor micro-architecture | | processor micro-architecture | | pipelining | | pipelining | | cache memory | | cache memory | | irtual memory | | irtual memory | | I/O | | I/O | | input/output | | input/output | | interrupts | | interrupts | | superscalar architectures | | superscalar architectures | | VLIW machines | | VLIW machines | | vector supercomputers | | vector supercomputers | | multithreaded architectures | | multithreaded architectures | | symmetric multiprocessors | | symmetric multiprocessors | | parallel computers | parallel computers | computer architecture | computer architecture | computer system architecture | computer system architecture | hardware | hardware | hardware design | hardware design | software | software | software design | software design | instruction set design | instruction set design | processor micro-architecture | processor micro-architecture | pipelining | pipelining | cache memory | cache memory | virtual memory | virtual memory | I/O | I/O | input/output | input/output | interrupts | interrupts | superscalar architectures | superscalar architectures | VLIW machines | VLIW machines | vector supercomputers | vector supercomputers | multithreaded architectures | multithreaded architectures | symmetric multiprocessors | symmetric multiprocessorsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.022 Calculus of Several Variables (MIT) 18.022 Calculus of Several Variables (MIT)

Description

This is a variation on 18.02 Multivariable Calculus. It covers the same topics as in 18.02, but with more focus on mathematical concepts. This is a variation on 18.02 Multivariable Calculus. It covers the same topics as in 18.02, but with more focus on mathematical concepts.Subjects

vector algebra | vector algebra | determinant | determinant | matrix | matrix | matrices | matrices | vector-valued functions | vector-valued functions | space motion | space motion | scalar functions | scalar functions | partial differentiation | partial differentiation | gradient | gradient | optimization techniques | optimization techniques | double integrals | double integrals | line integrals | line integrals | exact differentials | exact differentials | conservative fields | conservative fields | Green's theorem | Green's theorem | triple integrals | triple integrals | surface integrals | surface integrals | divergence theorem | divergence theorem | Stokes' theorem | Stokes' theorem | geometry | geometry | vector fields | vector fields | linear algebra | linear algebraLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from the materials science and engineering core courses (3.012 and 3.014) to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, and fourier analysis. Users may find additional or updated materials at Professor C This course covers the mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from the materials science and engineering core courses (3.012 and 3.014) to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, and fourier analysis. Users may find additional or updated materials at Professor CSubjects

energetics | energetics | visualization | visualization | graph | graph | plot | plot | chart | chart | materials science | materials science | DMSE | DMSE | structure | structure | symmetry | symmetry | mechanics | mechanics | physicss | physicss | solids and soft materials | solids and soft materials | linear algebra | linear algebra | orthonormal basis | orthonormal basis | eigenvalue | eigenvalue | eigenvector | eigenvector | quadratic form | quadratic form | tensor operation | tensor operation | symmetry operation | symmetry operation | calculus | calculus | complex analysis | complex analysis | differential equations | differential equations | ODE | ODE | solution | solution | vector | vector | matrix | matrix | determinant | determinant | theory of distributions | theory of distributions | fourier analysis | fourier analysis | random walk | random walk | Mathematica | Mathematica | simulation | simulationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This is an undergraduate course on calculus of several variables. It covers all of the topics covered in Calculus II (18.02), but presents them in greater depth. These topics are vector algebra in 3-space, determinants, matrices, vector-valued functions of one variable, space motion, scalar functions of several variables, partial differentiation, gradient, optimization techniques, double integrals, line integrals in the plane, exact differentials, conservative fields, Green's theorem, triple integrals, line and surface integrals in space, the divergence theorem, and Stokes' theorem. Additional topics covered in 18.022 are geometry, vector fields, and linear algebra.Subjects

vector algebra | determinant | matrix | matrices | vector-valued | functions | space motion | scalar functions | partial differentiation | gradient | optimization techniques | double integrals | line integrals | exact differentials | conservative fields | Green's theorem | triple integrals | surface integrals | divergence theorem | Stokes' theorem | geometry | vector fields | linear algebraLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.022 Physics II: Electricity and Magnetism (MIT) 8.022 Physics II: Electricity and Magnetism (MIT)

Description

This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials. This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts. This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials. This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts.Subjects

Electricity | Electricity | Magnetism | Magnetism | Maxwell's equations | Maxwell's equations | electrostatic potential | electrostatic potential | vector potential | vector potential | dielectrics | dielectrics | Coulomb's Law | Coulomb's Law | Electric Field | Electric Field | Electric Flux | Electric Flux | Gauss's Law | Gauss's Law | Electric Potential Gradient | Electric Potential Gradient | Poisson Equations | Poisson Equations | Laplace Equations | Laplace Equations | Curl | Curl | Conductors | Conductors | Capacitance | Capacitance | Resistance | Resistance | Kirchhoff's Rules | Kirchhoff's Rules | EMF | EMF | RC Circuits | RC Circuits | Th?venin Equivalence | Th?venin Equivalence | Magnetic Force | Magnetic Force | Magnetic Field | Magnetic Field | Ampere's Law | Ampere's Law | Special Relativity | Special Relativity | Spacetime | Spacetime | Biot-Savart Law | Biot-Savart Law | Faraday's Law | Faraday's Law | Lenz's Law | Lenz's Law | RL Circuits | RL Circuits | AC Circuits | AC Circuits | Electromagnetic Radiation | Electromagnetic Radiation | Poynting Vector | Poynting VectorLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.02 Multivariable Calculus (MIT) 18.02 Multivariable Calculus (MIT)

Description

This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include Vectors and Matrices, Partial Derivatives, Double and Triple Integrals, and Vector Calculus in 2 and 3-space. This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include Vectors and Matrices, Partial Derivatives, Double and Triple Integrals, and Vector Calculus in 2 and 3-space.Subjects

Calculus | Calculus | calculus of several variables | calculus of several variables | vector algebra | vector algebra | determinants | determinants | matrix | matrix | matrices | matrices | vector-valued function | vector-valued function | space motion | space motion | scalar function | scalar function | partial differentiation | partial differentiation | gradient | gradient | optimization techniques | optimization techniques | double integrals | double integrals | line integrals | line integrals | exact differential | exact differential | conservative fields | conservative fields | Green's theorem | Green's theorem | triple integrals | triple integrals | surface integrals | surface integrals | divergence theorem Stokes' theorem | divergence theorem Stokes' theorem | applications | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.033 Relativity (MIT) 8.033 Relativity (MIT)

Description

Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay. Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay.Subjects

Einstein's postulates | Einstein's postulates | consequences for simultaneity | time dilation | length contraction | clock synchronization | consequences for simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | Lorentz transformation | relativistic effects and paradoxes | relativistic effects and paradoxes | Minkowski diagrams | Minkowski diagrams | invariants and four-vectors | invariants and four-vectors | momentum | energy and mass | momentum | energy and mass | particle collisions | particle collisions | Relativity and electricity | Relativity and electricity | Coulomb's law | Coulomb's law | magnetic fields | magnetic fields | Newtonian cosmology | Newtonian cosmology | General Relativity | General Relativity | principle of equivalence | principle of equivalence | the Schwarzchild metric | the Schwarzchild metric | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | gravitational red shift | particle trajectories | particle trajectories | light trajectories | light trajectories | invariants | invariants | four-vectors | four-vectors | momentum | momentum | energy | energy | mass | mass | relativistic effects | relativistic effects | paradoxes | paradoxes | electricity | electricity | time dilation | time dilation | length contraction | length contraction | clock synchronization | clock synchronization | Schwarzchild metric | Schwarzchild metric | geodesics | geodesics | Shaprio delay | Shaprio delay | relativistic kinematics | relativistic kinematics | relativistic dynamics | relativistic dynamics | electromagnetism | electromagnetism | hubble expansion | hubble expansion | universe | universe | equivalence principle | equivalence principle | curved space time | curved space time | Ether Theory | Ether Theory | constants | constants | speed of light | speed of light | c | c | graph | graph | pythagorem theorem | pythagorem theorem | triangle | triangle | arrows | arrowsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataMAS.622J Pattern Recognition and Analysis (MIT) MAS.622J Pattern Recognition and Analysis (MIT)

Description

This class deals with the fundamentals of characterizing and recognizing patterns and features of interest in numerical data. We discuss the basic tools and theory for signal understanding problems with applications to user modeling, affect recognition, speech recognition and understanding, computer vision, physiological analysis, and more. We also cover decision theory, statistical classification, maximum likelihood and Bayesian estimation, nonparametric methods, unsupervised learning and clustering. Additional topics on machine and human learning from active research are also talked about in the class. This class deals with the fundamentals of characterizing and recognizing patterns and features of interest in numerical data. We discuss the basic tools and theory for signal understanding problems with applications to user modeling, affect recognition, speech recognition and understanding, computer vision, physiological analysis, and more. We also cover decision theory, statistical classification, maximum likelihood and Bayesian estimation, nonparametric methods, unsupervised learning and clustering. Additional topics on machine and human learning from active research are also talked about in the class.Subjects

MAS.622 | MAS.622 | 1.126 | 1.126 | pattern recognition | pattern recognition | feature detection | feature detection | classification | classification | probability theory | probability theory | pattern analysis | pattern analysis | conditional probability | conditional probability | bayes rule | bayes rule | random vectors | decision theory | random vectors | decision theory | ROC curves | ROC curves | likelihood ratio test | likelihood ratio test | fisher discriminant | fisher discriminant | template-based recognition | template-based recognition | feature extraction | feature extraction | eigenvector and multilinear analysis | eigenvector and multilinear analysis | linear discriminant | linear discriminant | perceptron learning | perceptron learning | optimization by gradient descent | optimization by gradient descent | support vecotr machines | support vecotr machines | K-nearest-neighbor classification | K-nearest-neighbor classification | parzen estimation | parzen estimation | unsupervised learning | unsupervised learning | clustering | clustering | vector quantization | vector quantization | K-means | K-means | Expectation-Maximization | Expectation-Maximization | Hidden markov models | Hidden markov models | viterbi algorithm | viterbi algorithm | Baum-Welch algorithm | Baum-Welch algorithm | linear dynamical systems | linear dynamical systems | Kalman filtering | Kalman filtering | Bayesian networks | Bayesian networks | decision trees | decision trees | reinforcement learning | reinforcement learning | genetic algorithms | genetic algorithmsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-MAS.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Curso centrado en los fundamentos de los problemas lineales: algebra matricial y espacios vectoriales. Curso centrado en los fundamentos de los problemas lineales: algebra matricial y espacios vectoriales.Subjects

ía Telemática | ía Telemática | Autovalores y autovectores | Autovalores y autovectores | Espacios vectoriales | Espacios vectoriales | 2009 | 2009 | Matrices | Matrices | ínimos cuadrados | ínimos cuadradosLicense

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_allAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.02SC Multivariable Calculus (MIT) 18.02SC Multivariable Calculus (MIT)

Description

Includes audio/video content: AV lectures. This course covers differential, integral and vector calculus for functions of more than one variable. These mathematical tools and methods are used extensively in the physical sciences, engineering, economics and computer graphics. Includes audio/video content: AV lectures. This course covers differential, integral and vector calculus for functions of more than one variable. These mathematical tools and methods are used extensively in the physical sciences, engineering, economics and computer graphics.Subjects

calculus | calculus | calculus of several variables | calculus of several variables | vector algebra | vector algebra | determinants | determinants | matrix | matrix | matrices | matrices | vector-valued function | vector-valued function | space motion | space motion | scalar function | scalar function | partial differentiation | partial differentiation | gradient | gradient | optimization techniques | optimization techniques | double integrals | double integrals | line integrals | line integrals | exact differential | exact differential | conservative fields | conservative fields | Green's theorem | Green's theorem | triple integrals | triple integrals | surface integrals | surface integrals | divergence theorem Stokes' theorem | divergence theorem Stokes' theorem | applications | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.02 Multivariable Calculus (MIT)

Description

This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include vectors and matrices, partial derivatives, double and triple integrals, and vector calculus in 2 and 3-space. MIT OpenCourseWare offers another version of 18.02, from the Spring 2006 term. Both versions cover the same material, although they are taught by different faculty and rely on different textbooks. Multivariable Calculus (18.02) is taught during the Fall and Spring terms at MIT, and is a required subject for all MIT undergraduates.Subjects

calculus | calculus of several variables | vector algebra | determinants | matrix | matrices | vector-valued function | space motion | scalar function | partial differentiation | gradient | optimization techniques | double integrals | line integrals | exact differential | conservative fields | Green's theorem | triple integrals | surface integrals | divergence theorem Stokes' theorem | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.02 Multivariable Calculus (MIT)

Description

This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include vectors and matrices, partial derivatives, double and triple integrals, and vector calculus in 2 and 3-space. MIT OpenCourseWare offers another version of 18.02, from the Spring 2006 term. Both versions cover the same material, although they are taught by different faculty and rely on different textbooks. Multivariable Calculus (18.02) is taught during the Fall and Spring terms at MIT, and is a required subject for all MIT undergraduates.Subjects

calculus | calculus of several variables | vector algebra | determinants | matrix | matrices | vector-valued function | space motion | scalar function | partial differentiation | gradient | optimization techniques | double integrals | line integrals | exact differential | conservative fields | Green's theorem | triple integrals | surface integrals | divergence theorem Stokes' theorem | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.06 Linear Algebra (MIT) 18.06 Linear Algebra (MIT)

Description

Basic subject on matrix theory and linear algebra, emphasizing topics useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices. Applications to least-squares approximations, stability of differential equations, networks, Fourier transforms, and Markov processes. Uses MATLAB®. Compared with 18.700 [also Linear Algebra], more emphasis on matrix algorithms and many applications. MATLAB® is a trademark of The MathWorks, Inc. Basic subject on matrix theory and linear algebra, emphasizing topics useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices. Applications to least-squares approximations, stability of differential equations, networks, Fourier transforms, and Markov processes. Uses MATLAB®. Compared with 18.700 [also Linear Algebra], more emphasis on matrix algorithms and many applications. MATLAB® is a trademark of The MathWorks, Inc.Subjects

Generalized spaces | Generalized spaces | Linear algebra | Linear algebra | Algebra | Universal | Algebra | Universal | Mathematical analysis | Mathematical analysis | Calculus of operations | Calculus of operations | Line geometry | Line geometry | Topology | Topology | matrix theory | matrix theory | systems of equations | systems of equations | vector spaces | vector spaces | systems determinants | systems determinants | eigen values | eigen values | positive definite matrices | positive definite matrices | Markov processes | Markov processes | Fourier transforms | Fourier transforms | differential equations | differential equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.701 Algebra I (MIT) 18.701 Algebra I (MIT)

Description

This undergraduate level Algebra I course covers groups, vector spaces, linear transformations, symmetry groups, bilinear forms, and linear groups. This undergraduate level Algebra I course covers groups, vector spaces, linear transformations, symmetry groups, bilinear forms, and linear groups.Subjects

Group Theory | Group Theory | Linear Algebra | and Geometry | Linear Algebra | and Geometry | groups | groups | vector spaces | vector spaces | linear transformations | linear transformations | symmetry groups | symmetry groups | bilinear | bilinear | bilinear forms | and linear groups | bilinear forms | and linear groupsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.024 Multivariable Calculus with Theory (MIT) 18.024 Multivariable Calculus with Theory (MIT)

Description

This course is a continuation of 18.014. It covers the same material as 18.02 (Multivariable Calculus), but at a deeper level, emphasizing careful reasoning and understanding of proofs. There is considerable emphasis on linear algebra and vector integral calculus. This course is a continuation of 18.014. It covers the same material as 18.02 (Multivariable Calculus), but at a deeper level, emphasizing careful reasoning and understanding of proofs. There is considerable emphasis on linear algebra and vector integral calculus.Subjects

linear algebra | linear algebra | vector integral calculus | vector integral calculus | Calculus of several variables | Calculus of several variables | Vector algebra in 3-space | Vector algebra in 3-space | determinants | determinants | matrices | matrices | Vector-valued functions of one variable | Vector-valued functions of one variable | space motion | space motion | Scalar functions of several variables | Scalar functions of several variables | partial differentiation | partial differentiation | gradient | gradient | optimization techniques | optimization techniques | Double integrals and line integrals in the plane | Double integrals and line integrals in the plane | exact differentials and conservative fields | exact differentials and conservative fields | Green's theorem and applications | Green's theorem and applications | triple integrals | triple integrals | line and surface integrals in space | line and surface integrals in space | Divergence theorem | Divergence theorem | Stokes' theorem | Stokes' theorem | applications | applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

6.450 was offered in Fall 2002 as a relatively new elective on digital communication. The course serves as an introduction to the theory and practice behind many of today's communications systems. 6.450 forms the first of a two-course sequence on digital communication. The second class, 6.451, is offered in the spring.Topics covered include: digital communications at the block diagram level, data compression, Lempel-Ziv algorithm, scalar and vector quantization, sampling and aliasing, the Nyquist criterion, PAM and QAM modulation, signal constellations, finite-energy waveform spaces, detection, and modeling and system design for wireless communication. 6.450 was offered in Fall 2002 as a relatively new elective on digital communication. The course serves as an introduction to the theory and practice behind many of today's communications systems. 6.450 forms the first of a two-course sequence on digital communication. The second class, 6.451, is offered in the spring.Topics covered include: digital communications at the block diagram level, data compression, Lempel-Ziv algorithm, scalar and vector quantization, sampling and aliasing, the Nyquist criterion, PAM and QAM modulation, signal constellations, finite-energy waveform spaces, detection, and modeling and system design for wireless communication.Subjects

digital communication | digital communication | data compression | data compression | Lempel-Ziv algorithm | Lempel-Ziv algorithm | scalar quantization | scalar quantization | vector quantization | vector quantization | sampling | sampling | aliasing | aliasing | Nyquist criterion | Nyquist criterion | PAM modulation | PAM modulation | QAM modulation | QAM modulation | signal constellations | signal constellations | finite-energy waveform spaces | finite-energy waveform spaces | detection | detection | communication system design | communication system designLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.701 Algebra I (MIT) 18.701 Algebra I (MIT)

Description

This undergraduate level Algebra I course covers groups, vector spaces, linear transformations, symmetry groups, bilinear forms, and linear groups. This undergraduate level Algebra I course covers groups, vector spaces, linear transformations, symmetry groups, bilinear forms, and linear groups.Subjects

Group Theory | Group Theory | Linear Algebra | Linear Algebra | Geometry | Geometry | groups | groups | vector spaces | vector spaces | linear transformations | linear transformations | symmetry groups | symmetry groups | bilinear forms | bilinear forms | linear groups | linear groupsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Includes audio/video content: AV lectures. The course serves as an introduction to the theory and practice behind many of today's communications systems. 6.450 forms the first of a two-course sequence on digital communication. The second class, 6.451, is offered in the spring. Topics covered include: digital communications at the block diagram level, data compression, Lempel-Ziv algorithm, scalar and vector quantization, sampling and aliasing, the Nyquist criterion, PAM and QAM modulation, signal constellations, finite-energy waveform spaces, detection, and modeling and system design for wireless communication. Includes audio/video content: AV lectures. The course serves as an introduction to the theory and practice behind many of today's communications systems. 6.450 forms the first of a two-course sequence on digital communication. The second class, 6.451, is offered in the spring. Topics covered include: digital communications at the block diagram level, data compression, Lempel-Ziv algorithm, scalar and vector quantization, sampling and aliasing, the Nyquist criterion, PAM and QAM modulation, signal constellations, finite-energy waveform spaces, detection, and modeling and system design for wireless communication.Subjects

digital communication | digital communication | data compression | data compression | Lempel-Ziv algorithm | Lempel-Ziv algorithm | scalar quantization | scalar quantization | vector quantization | vector quantization | sampling | sampling | aliasing | aliasing | Nyquist criterion | Nyquist criterion | PAM modulation | PAM modulation | QAM modulation | QAM modulation | signal constellations | signal constellations | finite-energy waveform spaces | finite-energy waveform spaces | detection | detection | communication system design | communication system designLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.06 Linear Algebra (MIT) 18.06 Linear Algebra (MIT)

Description

This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices. This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices.Subjects

Generalized spaces | Generalized spaces | Linear algebra | Linear algebra | Algebra | Universal | Algebra | Universal | Mathematical analysis | Mathematical analysis | Calculus of operations | Calculus of operations | Line geometry | Line geometry | Topology | Topology | matrix theory | matrix theory | systems of equations | systems of equations | vector spaces | vector spaces | systems determinants | systems determinants | eigen values | eigen values | positive definite matrices | positive definite matrices | Markov processes | Markov processes | Fourier transforms | Fourier transforms | differential equations | differential equations | linear algebra | linear algebra | determinants | determinants | eigenvalues | eigenvalues | similarity | similarity | least-squares approximations | least-squares approximations | stability of differential equations | stability of differential equations | networks | networksLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The main goal of this course is to study the generalization ability of a number of popular machine learning algorithms such as boosting, support vector machines and neural networks. Topics include Vapnik-Chervonenkis theory, concentration inequalities in product spaces, and other elements of empirical process theory. The main goal of this course is to study the generalization ability of a number of popular machine learning algorithms such as boosting, support vector machines and neural networks. Topics include Vapnik-Chervonenkis theory, concentration inequalities in product spaces, and other elements of empirical process theory.Subjects

machine learning algorithms | machine learning algorithms | boosting | boosting | support | support | support vector machines | support vector machines | neural networks | neural networks | Vapnik- Chervonenkis theory | Vapnik- Chervonenkis theory | concentration inequalities in product spaces | concentration inequalities in product spaces | empirical process theory | empirical process theoryLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataMathematical Methods II Mathematical Methods II

Description

This course consists of a introduction to linear algebra. This course consists of a introduction to linear algebra.Subjects

Bachelor in Statistics and Business | Bachelor in Statistics and Business | Algebra | Algebra | Prerequisites | Prerequisites | Systems of linear equations | Systems of linear equations | Eigenvalues and eigenvectors | Eigenvalues and eigenvectors | General information | General information | Orthogonality and least-square problems | Orthogonality and least-square problems | Singular value decomposition | Singular value decomposition | ística y Empresa | ística y Empresa | Real vector spaces | Real vector spaces | Matrices and determinants | Matrices and determinants | Diagonalization | Diagonalization | 2012 | 2012License

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_allAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.906 Algebraic Topology II (MIT) 18.906 Algebraic Topology II (MIT)

Description

In this second term of Algebraic Topology, the topics covered include fibrations, homotopy groups, the Hurewicz theorem, vector bundles, characteristic classes, cobordism, and possible further topics at the discretion of the instructor. In this second term of Algebraic Topology, the topics covered include fibrations, homotopy groups, the Hurewicz theorem, vector bundles, characteristic classes, cobordism, and possible further topics at the discretion of the instructor.Subjects

Fibrations | Fibrations | homotopy groups | homotopy groups | the Hurewicz theorem | the Hurewicz theorem | vector bundles | vector bundles | characteristic classes | characteristic classes | cobordism | cobordismLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata