Searching for waves : 404 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Description

This course is an introduction to basic ideas of geophysical wave motion in rotating, stratified, and rotating-stratified fluids. Subject begins with general wave concepts of phase and group velocity. It also covers the dynamics and kinematics of gravity waves with a focus on dispersion, energy flux, initial value problems, etc. Also addressed are subject foundation used to study internal and inertial waves, Kelvin, Poincare, and Rossby waves in homogeneous and stratified fluids. Laplace tidal equations are applied to equatorial waves. Other topics include: resonant interactions, potential vorticity, wave-mean flow interactions, and instability. This course is an introduction to basic ideas of geophysical wave motion in rotating, stratified, and rotating-stratified fluids. Subject begins with general wave concepts of phase and group velocity. It also covers the dynamics and kinematics of gravity waves with a focus on dispersion, energy flux, initial value problems, etc. Also addressed are subject foundation used to study internal and inertial waves, Kelvin, Poincare, and Rossby waves in homogeneous and stratified fluids. Laplace tidal equations are applied to equatorial waves. Other topics include: resonant interactions, potential vorticity, wave-mean flow interactions, and instability.Subjects

geophysical wave motion | geophysical wave motion | rotating | stratified | and rotating-stratified fluids | rotating | stratified | and rotating-stratified fluids | general wave concepts | general wave concepts | phase | phase | group velocity | group velocity | dynamics and kinematics of gravity waves | dynamics and kinematics of gravity waves | dispersion | dispersion | energy flux | energy flux | initial value problems | initial value problems | internal and inertial waves | internal and inertial waves | Kelvin | Kelvin | Poincare | Poincare | and Rossby waves | and Rossby waves | homogeneous and stratified fluids | homogeneous and stratified fluids | Laplace tidal equations | Laplace tidal equations | equatorial waves | equatorial waves | resonant interactions | resonant interactions | potential vorticity | potential vorticity | wave-mean flow interactions | wave-mean flow interactions | instability | instability | 12. Kelvin | Poincare | and Rossby waves | 12. Kelvin | Poincare | and Rossby waves | Kelvin | Poincare | and Rossby waves | Kelvin | Poincare | and Rossby waves | internal gravity waves | internal gravity waves | surface gravity waves | surface gravity waves | rotation | rotation | large-scale hydrostatic motions | large-scale hydrostatic motions | vertical structure equation | vertical structure equation | equatorial ?-plane | equatorial ?-plane | Stratified Quasi-Geostrophic Motion | Stratified Quasi-Geostrophic MotionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.138J Wave Propagation (MIT) 1.138J Wave Propagation (MIT)

Description

This course discusses the Linearized theory of wave phenomena in applied mechanics. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics and other subjects. The topics include: basic concepts, one dimensional examples, characteristics, dispersion and group velocity, scattering, transmission and reflection, two dimensional reflection and refraction across an interface, mode conversion in elastic waves, diffraction and parabolic approximation, radiation from a line source, surface Rayleigh waves and Love waves in elastic media, waves on the sea surface and internal waves in a stratified fluid, waves in moving media, ship wave pattern, atmospheric lee waves behind an obstacle, and waves through a laminated media, etc. This course discusses the Linearized theory of wave phenomena in applied mechanics. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics and other subjects. The topics include: basic concepts, one dimensional examples, characteristics, dispersion and group velocity, scattering, transmission and reflection, two dimensional reflection and refraction across an interface, mode conversion in elastic waves, diffraction and parabolic approximation, radiation from a line source, surface Rayleigh waves and Love waves in elastic media, waves on the sea surface and internal waves in a stratified fluid, waves in moving media, ship wave pattern, atmospheric lee waves behind an obstacle, and waves through a laminated media, etc.Subjects

1.138 | 1.138 | 2.062 | 2.062 | acoustics | acoustics | geophysics | geophysics | hydrodynamics | hydrodynamics | wave phenomena | wave phenomena | wave propagation | wave propagationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.062J Wave Propagation (MIT) 2.062J Wave Propagation (MIT)

Description

This course discusses the Linearized theory of wave phenomena in applied mechanics. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics and other subjects. The topics include: basic concepts, one dimensional examples, characteristics, dispersion and group velocity, scattering, transmission and reflection, two dimensional reflection and refraction across an interface, mode conversion in elastic waves, diffraction and parabolic approximation, radiation from a line source, surface Rayleigh waves and Love waves in elastic media, waves on the sea surface and internal waves in a stratified fluid, waves in moving media, ship wave pattern, atmospheric lee waves behind an obstacle, and waves through a laminated media. This course discusses the Linearized theory of wave phenomena in applied mechanics. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics and other subjects. The topics include: basic concepts, one dimensional examples, characteristics, dispersion and group velocity, scattering, transmission and reflection, two dimensional reflection and refraction across an interface, mode conversion in elastic waves, diffraction and parabolic approximation, radiation from a line source, surface Rayleigh waves and Love waves in elastic media, waves on the sea surface and internal waves in a stratified fluid, waves in moving media, ship wave pattern, atmospheric lee waves behind an obstacle, and waves through a laminated media.Subjects

1.138 | 1.138 | 2.062 | 2.062 | acoustics | acoustics | geophysics | geophysics | hydrodynamics | hydrodynamics | wave phenomena | wave phenomena | wave propagation | wave propagationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Includes audio/video content: AV lectures. 8.03 Physics III: Vibrations and Waves is the third course in the core physics curriculum at MIT, following 8.01 Physics I: Classical Mechanics and 8.02 Physics II: Electricity and Magnetism. Topics include mechanical vibrations and waves, electromagnetic waves, and optics. These Problem Solving Help Videos provide step-by-step solutions to sample problems. Also included is information about how Physics III is typically taught on the MIT campus. Instructor Insights are shared by Professor Wit Busza who has taught Physics III and its associated recitation sessions many times. Professor Busza's insights focus on his approach to problem solving, strategies for supporting students as they solve problems, and common sources of confusion for students i Includes audio/video content: AV lectures. 8.03 Physics III: Vibrations and Waves is the third course in the core physics curriculum at MIT, following 8.01 Physics I: Classical Mechanics and 8.02 Physics II: Electricity and Magnetism. Topics include mechanical vibrations and waves, electromagnetic waves, and optics. These Problem Solving Help Videos provide step-by-step solutions to sample problems. Also included is information about how Physics III is typically taught on the MIT campus. Instructor Insights are shared by Professor Wit Busza who has taught Physics III and its associated recitation sessions many times. Professor Busza's insights focus on his approach to problem solving, strategies for supporting students as they solve problems, and common sources of confusion for students iSubjects

vibrations | vibrations | waves | waves | mass on a spring | mass on a spring | LC circuit | LC circuit | simple harmonic motion | simple harmonic motion | harmonic oscillators | harmonic oscillators | damping | damping | coupled oscillators | coupled oscillators | traveling waves | traveling waves | standing waves | standing waves | electromagnetic waves | electromagnetic waves | interference | interference | radiating electromagnetic waves | radiating electromagnetic waves | Quality Factor Q | Quality Factor QLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.333 Atmospheric and Ocean Circulations (MIT) 12.333 Atmospheric and Ocean Circulations (MIT)

Description

In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss. In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.Subjects

atmospheric and oceanic phenomena | atmospheric and oceanic phenomena | observations | observations | theoretical interpretations | theoretical interpretations | monsoons | monsoons | El Ni?o | El Ni?o | planetary waves | planetary waves | atmospheric synoptic eddies and fronts | atmospheric synoptic eddies and fronts | gulf stream rings | gulf stream rings | hurricanes | hurricanes | surface and internal gravity waves | surface and internal gravity waves | tides | tides | shallow water gravity waves | shallow water gravity waves | deep water gravity waves | deep water gravity waves | internal gravity waves | internal gravity waves | large-scale motions | large-scale motions | rotating earth | rotating earth | Rossby waves | Rossby waves | planetary scale motions | planetary scale motions | baroclinic instability | baroclinic instability | midlatitude storms | midlatitude storms | equatorial atmosphere | equatorial atmosphere | equatorial ocean | equatorial ocean | southern oscillation | southern oscillation | tropical cyclones | tropical cyclones | typhoons | typhoonsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.802 Wave Motions in the Ocean and Atmosphere (MIT)

Description

This course is an introduction to basic ideas of geophysical wave motion in rotating, stratified, and rotating-stratified fluids. Subject begins with general wave concepts of phase and group velocity. It also covers the dynamics and kinematics of gravity waves with a focus on dispersion, energy flux, initial value problems, etc. Also addressed are subject foundation used to study internal and inertial waves, Kelvin, Poincare, and Rossby waves in homogeneous and stratified fluids. Laplace tidal equations are applied to equatorial waves. Other topics include: resonant interactions, potential vorticity, wave-mean flow interactions, and instability.Subjects

geophysical wave motion | rotating | stratified | and rotating-stratified fluids | general wave concepts | phase | group velocity | dynamics and kinematics of gravity waves | dispersion | energy flux | initial value problems | internal and inertial waves | Kelvin | Poincare | and Rossby waves | homogeneous and stratified fluids | Laplace tidal equations | equatorial waves | resonant interactions | potential vorticity | wave-mean flow interactions | instability | 12. Kelvin | Poincare | and Rossby waves | Kelvin | Poincare | and Rossby waves | internal gravity waves | surface gravity waves | rotation | large-scale hydrostatic motions | vertical structure equation | equatorial ?-plane | Stratified Quasi-Geostrophic MotionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.138J Wave Propagation (MIT) 1.138J Wave Propagation (MIT)

Description

Linearized theory of wave phenomena in applied mechanics. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics and other subjects. Basic concepts. One dimensional examples. Characteristics, dispersion and group velocity. Scattering, transmission and reflection. Two dimensional reflection and refraction across an interface. Mode conversion in elastic waves. Diffraction and parabolic approximation Radiation from a line source. Surface Rayleigh waves and Love waves in elastic media. Waves on the sea surface and internal waves in a stratified fluid. Waves in moving media. Ship wave pattern. Atmospheric lee waves behind an obstacle. Waves through a laminated media, etc. Linearized theory of wave phenomena in applied mechanics. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics and other subjects. Basic concepts. One dimensional examples. Characteristics, dispersion and group velocity. Scattering, transmission and reflection. Two dimensional reflection and refraction across an interface. Mode conversion in elastic waves. Diffraction and parabolic approximation Radiation from a line source. Surface Rayleigh waves and Love waves in elastic media. Waves on the sea surface and internal waves in a stratified fluid. Waves in moving media. Ship wave pattern. Atmospheric lee waves behind an obstacle. Waves through a laminated media, etc.Subjects

wave propagation | wave propagation | wave phenomena | wave phenomena | hydrodynamics | hydrodynamics | geophysics | geophysics | acoustics | acoustics | 1.138 | 1.138 | 2.062 | 2.062License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.311 Principles of Applied Mathematics (MIT) 18.311 Principles of Applied Mathematics (MIT)

Description

This course introduces fundamental concepts in "continuous'' applied mathematics, with an emphasis on nonlinear partial differential equations (PDEs). Topics include linear and nonlinear waves: kinematic waves, method of characteristics, expansion fans, wave breaking, shock dynamics, shock structure; linear and nonlinear diffusion: Green functions, Fourier transform, similarity solutions, boundary layers, Nernst-Planck equations. Applications include traffic flow, gas dynamics, and granular flow. This course introduces fundamental concepts in "continuous'' applied mathematics, with an emphasis on nonlinear partial differential equations (PDEs). Topics include linear and nonlinear waves: kinematic waves, method of characteristics, expansion fans, wave breaking, shock dynamics, shock structure; linear and nonlinear diffusion: Green functions, Fourier transform, similarity solutions, boundary layers, Nernst-Planck equations. Applications include traffic flow, gas dynamics, and granular flow.Subjects

Linear and nonlinear waves | Linear and nonlinear waves | hyperbolic waves | hyperbolic waves | kinematic waves | kinematic waves | expansion fans | expansion fans | shock dynamics | shock dynamics | shock structure | shock structure | Linear diffusion | Linear diffusion | nonlinear diffusion | nonlinear diffusion | Green functions | Green functions | Fourier transform | Fourier transform | dimensional analysis | dimensional analysis | similarity solutions | similarity solutions | boundary layers | boundary layers | traffic flow | traffic flow | gas dynamics | gas dynamics | tsunamis | tsunamis | heat transfer | heat transfer | ion transport | ion transport | granular flow | granular flowLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.013 Electromagnetics and Applications (MIT) 6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions. This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.Acknowledgments The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.Subjects

ESD.013 | ESD.013 | electromagnetics | electromagnetics | applications | applications | wireless communications | wireless communications | circuits | circuits | computer interconnects | computer interconnects | peripherals | peripherals | optical fiber links | optical fiber links | microwave communications | microwave communications | radar | radar | antennas | antennas | sensors | sensors | micro-electromechanical systems | micro-electromechanical systems | power generation | power generation | power transmission | power transmission | quasistatic solutions | quasistatic solutions | dynamic solutions | dynamic solutions | Maxwell | Maxwell | Maxwell's equations | Maxwell's equations | waves | waves | radiation | radiation | diffraction | diffraction | guided waves | guided waves | unguided waves | unguided waves | resonance | resonance | forces | forces | power | power | energy | energyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.013 Electromagnetics and Applications (MIT) 6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.The instructors of this course extend a general acknowledgment to the many students and instructors who have made major contributions to the 6.013 course materials over the years, and apologize for any residual errors that may remain in these writ This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.The instructors of this course extend a general acknowledgment to the many students and instructors who have made major contributions to the 6.013 course materials over the years, and apologize for any residual errors that may remain in these writSubjects

electromagnetics | electromagnetics | applications | applications | wireless communications | wireless communications | circuits | circuits | computer interconnects | computer interconnects | peripherals | peripherals | optical fiber links | optical fiber links | microwave | microwave | communications | communications | radar | radar | antennas | antennas | sensors | sensors | micro-electromechanical systems | micro-electromechanical systems | power generation | power generation | power transmission | power transmission | quasistatic solutions | quasistatic solutions | dynamic solutions | dynamic solutions | Maxwell | Maxwell | Maxwell's equations | Maxwell's equations | waves | waves | radiation | radiation | diffraction | diffraction | guided waves | guided waves | unguided waves | unguided waves | resonance | resonance | forces | forces | power | power | energy | energy | microwave communications | microwave communicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.810 Dynamics of the Atmosphere (MIT) 12.810 Dynamics of the Atmosphere (MIT)

Description

This course begins with a study of the role of dynamics in the general physics of the atmosphere, the consideration of the differences between modeling and approximation, and the observed large-scale phenomenology of the atmosphere. Only then are the basic equations derived in rigorous manner. The equations are then applied to important problems and methodologies in meteorology and climate, with discussions of the history of the topics where appropriate. Problems include the Hadley circulation and its role in the general circulation, atmospheric waves including gravity and Rossby waves and their interaction with the mean flow, with specific applications to the stratospheric quasi-biennial oscillation, tides, the super-rotation of Venus' atmosphere, the generation of atmospheric turbulence This course begins with a study of the role of dynamics in the general physics of the atmosphere, the consideration of the differences between modeling and approximation, and the observed large-scale phenomenology of the atmosphere. Only then are the basic equations derived in rigorous manner. The equations are then applied to important problems and methodologies in meteorology and climate, with discussions of the history of the topics where appropriate. Problems include the Hadley circulation and its role in the general circulation, atmospheric waves including gravity and Rossby waves and their interaction with the mean flow, with specific applications to the stratospheric quasi-biennial oscillation, tides, the super-rotation of Venus' atmosphere, the generation of atmospheric turbulenceSubjects

atmosphere | atmosphere | meteorology | meteorology | climate | climate | Hadley circulation | Hadley circulation | general circulation | general circulation | atmospheric waves | atmospheric waves | Rossby waves | Rossby waves | stationary waves | stationary waves | atmospheric turbulence | atmospheric turbulenceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures. Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and thei The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures. Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and theiSubjects

floating bodies | floating bodies | offshore platforms | offshore platforms | ships | ships | fluid dynamics | fluid dynamics | surface energy | surface energyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course discusses the Linearized theory of wave phenomena in applied mechanics. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics and other subjects. The topics include: basic concepts, one dimensional examples, characteristics, dispersion and group velocity, scattering, transmission and reflection, two dimensional reflection and refraction across an interface, mode conversion in elastic waves, diffraction and parabolic approximation, radiation from a line source, surface Rayleigh waves and Love waves in elastic media, waves on the sea surface and internal waves in a stratified fluid, waves in moving media, ship wave pattern, atmospheric lee waves behind an obstacle, and waves through a laminated media.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course discusses the Linearized theory of wave phenomena in applied mechanics. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics and other subjects. The topics include: basic concepts, one dimensional examples, characteristics, dispersion and group velocity, scattering, transmission and reflection, two dimensional reflection and refraction across an interface, mode conversion in elastic waves, diffraction and parabolic approximation, radiation from a line source, surface Rayleigh waves and Love waves in elastic media, waves on the sea surface and internal waves in a stratified fluid, waves in moving media, ship wave pattern, atmospheric lee waves behind an obstacle, and waves through a laminated media.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata22.611J Introduction To Plasma Physics I (MIT) 22.611J Introduction To Plasma Physics I (MIT)

Description

Introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics. Basic plasma properties and collective behavior. Coulomb collisions and transport processes. Motion of charged particles in magnetic fields; plasma confinement schemes. MHD models; simple equilibrium and stability analysis. Two-fluid hydrodynamic plasma models; wave propagation in a magnetic field.Introduces kinetic theory; Vlasov plasma model; electron plasma waves and Landau damping; ion-acoustic waves; streaming instabilities. A subject description tailored to fit the background and interests of the attending students distributed shortly before and at the beginning of the subject. Introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics. Basic plasma properties and collective behavior. Coulomb collisions and transport processes. Motion of charged particles in magnetic fields; plasma confinement schemes. MHD models; simple equilibrium and stability analysis. Two-fluid hydrodynamic plasma models; wave propagation in a magnetic field.Introduces kinetic theory; Vlasov plasma model; electron plasma waves and Landau damping; ion-acoustic waves; streaming instabilities. A subject description tailored to fit the background and interests of the attending students distributed shortly before and at the beginning of the subject.Subjects

plasma phenomena | plasma phenomena | energy generation | energy generation | thermonuclear fusion | thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | plasma confinement schemes | | plasma confinement schemes | | MHD models | MHD models | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities | 22.611 | 22.611 | 6.651 | 6.651 | 8.613 | 8.613License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata22.611J Introduction to Plasma Physics I (MIT) 22.611J Introduction to Plasma Physics I (MIT)

Description

In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magneSubjects

plasma phenomena | plasma phenomena | energy generation | energy generation | controlled thermonuclear fusion | controlled thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | charged particles | charged particles | magnetic fields | magnetic fields | plasma confinement schemes | plasma confinement schemes | MHD models | MHD models | simple equilibrium | simple equilibrium | stability analysis | stability analysis | Two-fluid hydrodynamic plasma models | Two-fluid hydrodynamic plasma models | wave propagation | wave propagation | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities | fourth state of matter | fourth state of matter | plasma state | plasma state | visible universe | visible universe | economics | economics | plasmas | plasmas | motion of charged particles | motion of charged particles | two-fluid hydrodynamic plasma models | two-fluid hydrodynamic plasma models | Debye Shielding | Debye Shielding | collective effects | collective effects | charged particle motion | charged particle motion | EM Fields | EM Fields | cross-sections | cross-sections | relaxation | relaxation | fluid plasma descriptions | fluid plasma descriptions | MHD equilibrium | MHD equilibrium | MHD dynamics | MHD dynamics | dynamics in two-fluid plasmas | dynamics in two-fluid plasmas | cold plasma waves | cold plasma waves | magnetic field | magnetic field | microscopic to fluid plasma descriptions | microscopic to fluid plasma descriptions | Vlasov-Maxwell kinetic theory.linear Landau growth | Vlasov-Maxwell kinetic theory.linear Landau growth | kinetic description of waves | kinetic description of waves | instabilities | instabilities | Vlasov-Maxwell kinetic theory | Vlasov-Maxwell kinetic theory | linear Landau growth | linear Landau growth | 22.611 | 22.611 | 6.651 | 6.651 | 8.613 | 8.613License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures.Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and their The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures.Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and theirSubjects

floating bodies | floating bodies | offshore platforms | offshore platforms | ships | ships | fluid dynamics | fluid dynamics | surface energy | surface energyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.311 Principles of Applied Mathematics (MIT) 18.311 Principles of Applied Mathematics (MIT)

Description

18.311 Principles of Continuum Applied Mathematics covers fundamental concepts in continuous applied mathematics, including applications from traffic flow, fluids, elasticity, granular flows, etc. The class also covers continuum limit; conservation laws, quasi-equilibrium; kinematic waves; characteristics, simple waves, shocks; diffusion (linear and nonlinear); numerical solution of wave equations; finite differences, consistency, stability; discrete and fast Fourier transforms; spectral methods; transforms and series (Fourier, Laplace). Additional topics may include sonic booms, Mach cone, caustics, lattices, dispersion, and group velocity. 18.311 Principles of Continuum Applied Mathematics covers fundamental concepts in continuous applied mathematics, including applications from traffic flow, fluids, elasticity, granular flows, etc. The class also covers continuum limit; conservation laws, quasi-equilibrium; kinematic waves; characteristics, simple waves, shocks; diffusion (linear and nonlinear); numerical solution of wave equations; finite differences, consistency, stability; discrete and fast Fourier transforms; spectral methods; transforms and series (Fourier, Laplace). Additional topics may include sonic booms, Mach cone, caustics, lattices, dispersion, and group velocity.Subjects

partial differential equation | partial differential equation | hyperbolic equations | hyperbolic equations | dimensional analysis | dimensional analysis | perturbation methods | perturbation methods | hyperbolic systems | hyperbolic systems | diffusion and reaction processes | diffusion and reaction processes | continuum models | continuum models | equilibrium models | equilibrium models | continuous applied mathematics | continuous applied mathematics | traffic flow | traffic flow | fluids | fluids | elasticity | elasticity | granular flows | granular flows | continuum limit | continuum limit | conservation laws | conservation laws | quasi-equilibrium | quasi-equilibrium | kinematic waves | kinematic waves | characteristics | characteristics | simple waves | simple waves | shocks | shocks | diffusion (linear and nonlinear) | diffusion (linear and nonlinear) | numerical solution of wave equations | numerical solution of wave equations | finite differences | finite differences | consistency | consistency | stability | stability | discrete and fast Fourier transforms | discrete and fast Fourier transforms | spectral methods | spectral methods | transforms and series (Fourier | Laplace) | transforms and series (Fourier | Laplace) | sonic booms | sonic booms | Mach cone | Mach cone | caustics | caustics | lattices | lattices | dispersion | dispersion | group velocity | group velocityLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course discusses the Linearized theory of wave phenomena in applied mechanics. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics and other subjects. The topics include: basic concepts, one dimensional examples, characteristics, dispersion and group velocity, scattering, transmission and reflection, two dimensional reflection and refraction across an interface, mode conversion in elastic waves, diffraction and parabolic approximation, radiation from a line source, surface Rayleigh waves and Love waves in elastic media, waves on the sea surface and internal waves in a stratified fluid, waves in moving media, ship wave pattern, atmospheric lee waves behind an obstacle, and waves through a laminated media.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.311 Principles of Applied Mathematics (MIT) 18.311 Principles of Applied Mathematics (MIT)

Description

Discussion of computational and modeling issues. Nonlinear dynamical systems; nonlinear waves; diffusion; stability; characteristics; nonlinear steepening, breaking and shock formation; conservation laws; first-order partial differential equations; finite differences; numerical stability; etc. Applications to traffic problems, flows in rivers, internal waves, mechanical vibrations and other problems in the physical world.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. MATLAB® is a trademark of The MathWorks, Inc. Discussion of computational and modeling issues. Nonlinear dynamical systems; nonlinear waves; diffusion; stability; characteristics; nonlinear steepening, breaking and shock formation; conservation laws; first-order partial differential equations; finite differences; numerical stability; etc. Applications to traffic problems, flows in rivers, internal waves, mechanical vibrations and other problems in the physical world.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. MATLAB® is a trademark of The MathWorks, Inc.Subjects

Nonlinear dynamical systems | Nonlinear dynamical systems | nonlinear waves | nonlinear waves | diffusion | diffusion | stability | stability | characteristics | characteristics | nonlinear steepening | nonlinear steepening | breaking and shock formation | breaking and shock formation | conservation laws | conservation laws | first-order partial differential equations | first-order partial differential equations | finite differences | finite differences | numerical stability | numerical stability | traffic problems | traffic problems | flows in rivers | flows in rivers | internal waves | internal waves | mechanical vibrations | mechanical vibrationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course discusses the Linearized theory of wave phenomena in applied mechanics. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics and other subjects. The topics include: basic concepts, one dimensional examples, characteristics, dispersion and group velocity, scattering, transmission and reflection, two dimensional reflection and refraction across an interface, mode conversion in elastic waves, diffraction and parabolic approximation, radiation from a line source, surface Rayleigh waves and Love waves in elastic media, waves on the sea surface and internal waves in a stratified fluid, waves in moving media, ship wave pattern, atmospheric lee waves behind an obstacle, and waves through a laminated media, etc.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.811 Tropical Meteorology (MIT) 12.811 Tropical Meteorology (MIT)

Description

This course describes the behavior and dynamics of the tropical troposphere, from the large-scale energy balance down to cumulus convection and tropical cyclones. Topics include: Radiative-convective equilibrium; the Hadley and walker circulation; monsoons; tropical boundary layers; theory of the response of the tropical atmosphere to localized sea-surface temperature anomalies; intraseasonal oscillations; equatorial waves; El Niño/Southern Oscillation; easterly waves; and tropical cyclones. This course describes the behavior and dynamics of the tropical troposphere, from the large-scale energy balance down to cumulus convection and tropical cyclones. Topics include: Radiative-convective equilibrium; the Hadley and walker circulation; monsoons; tropical boundary layers; theory of the response of the tropical atmosphere to localized sea-surface temperature anomalies; intraseasonal oscillations; equatorial waves; El Niño/Southern Oscillation; easterly waves; and tropical cyclones.Subjects

Radiative-convective equilibrium | Radiative-convective equilibrium | the Hadley and walker circulation | the Hadley and walker circulation | monsoons | monsoons | tropical boundary layers | tropical boundary layers | theory of the response of the tropical atmosphere to localized sea-surface temperature anomalies | theory of the response of the tropical atmosphere to localized sea-surface temperature anomalies | intraseasonal oscillations | intraseasonal oscillations | equatorial waves | equatorial waves | El Ni?o/Southern Oscillation | El Ni?o/Southern Oscillation | easterly waves | easterly waves | tropical cyclones. | tropical cyclones. | tropical cyclones | tropical cyclonesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.811 Tropical Meteorology (MIT) 12.811 Tropical Meteorology (MIT)

Description

This course describes the large-scale circulation systems of the tropical atmosphere and analyses the dynamics of such systems. Topics include: Radiative-convective equilibrium; the Hadley and walker circulation; monsoons; tropical boundary layers; theory of the response of the tropical atmosphere to localized sea-surface temperature anomalies; intraseasonal oscillations; equatorial waves; El Niño/Southern Oscillation; easterly waves; and tropical cyclones. This course describes the large-scale circulation systems of the tropical atmosphere and analyses the dynamics of such systems. Topics include: Radiative-convective equilibrium; the Hadley and walker circulation; monsoons; tropical boundary layers; theory of the response of the tropical atmosphere to localized sea-surface temperature anomalies; intraseasonal oscillations; equatorial waves; El Niño/Southern Oscillation; easterly waves; and tropical cyclones.Subjects

Radiative-convective equilibrium | Radiative-convective equilibrium | the Hadley and walker circulation | the Hadley and walker circulation | monsoons | monsoons | tropical boundary layers | tropical boundary layers | intraseasonal oscillations | intraseasonal oscillations | equatorial waves | equatorial waves | El Niño/Southern Oscillation | El Niño/Southern Oscillation | easterly waves | easterly waves | tropical cyclones | tropical cyclonesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.635 Advanced Electromagnetism (MIT) 6.635 Advanced Electromagnetism (MIT)

Description

In 6.635, topics covered include: special relativity, electrodynamics of moving media, waves in dispersive media, microstrip integrated circuits, quantum optics, remote sensing, radiative transfer theory, scattering by rough surfaces, effective permittivities, random media, Green's functions for planarly layered media, integral equations in electromagnetics, method of moments, time domain method of moments, EM waves in periodic structures: photonic crystals and negative refraction. In 6.635, topics covered include: special relativity, electrodynamics of moving media, waves in dispersive media, microstrip integrated circuits, quantum optics, remote sensing, radiative transfer theory, scattering by rough surfaces, effective permittivities, random media, Green's functions for planarly layered media, integral equations in electromagnetics, method of moments, time domain method of moments, EM waves in periodic structures: photonic crystals and negative refraction.Subjects

electromagnetism | electromagnetism | special relativity | special relativity | electrodynamics | electrodynamics | waves | waves | dispersive media | dispersive media | microstrip integrated circuits | microstrip integrated circuits | quantum optics | quantum optics | remote sensing | remote sensing | radiative transfer theory | radiative transfer theory | scattering | scattering | effective permittivities | effective permittivities | random media | random media | Green's functions | Green's functions | planarly layered media | planarly layered media | integral equations | integral equations | method of moments | method of moments | time domain method of moments | time domain method of moments | EM waves | EM waves | periodic structures | periodic structures | photonic crystals | photonic crystals | negative refraction | negative refractionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course discusses the Linearized theory of wave phenomena in applied mechanics. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics and other subjects. The topics include: basic concepts, one dimensional examples, characteristics, dispersion and group velocity, scattering, transmission and reflection, two dimensional reflection and refraction across an interface, mode conversion in elastic waves, diffraction and parabolic approximation, radiation from a line source, surface Rayleigh waves and Love waves in elastic media, waves on the sea surface and internal waves in a stratified fluid, waves in moving media, ship wave pattern, atmospheric lee waves behind an obstacle, and waves through a laminated media.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata