Searching for motifs : 11 results found | RSS Feed for this search

6.895 Computational Biology: Genomes, Networks, Evolution (MIT) 6.895 Computational Biology: Genomes, Networks, Evolution (MIT)

Description

This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include:Genomes: Biological Sequence Analysis, Hidden Markov Models, Gene Finding, RNA Folding, Sequence Alignment, Genome Assembly.Networks: Gene Expression Analysis, Regulatory Motifs, Graph Algorithms, Scale-free Networks, Network Motifs, Network Evolution.Evolution: Comparative Genomics, Phylogenetics, Genome Duplication, Genome Rearrangements, Evolutionary Theory, Rapid Evolution. This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include:Genomes: Biological Sequence Analysis, Hidden Markov Models, Gene Finding, RNA Folding, Sequence Alignment, Genome Assembly.Networks: Gene Expression Analysis, Regulatory Motifs, Graph Algorithms, Scale-free Networks, Network Motifs, Network Evolution.Evolution: Comparative Genomics, Phylogenetics, Genome Duplication, Genome Rearrangements, Evolutionary Theory, Rapid Evolution.

Subjects

Genomes: Biological sequence analysis | Genomes: Biological sequence analysis | hidden Markov models | hidden Markov models | gene finding | gene finding | RNA folding | RNA folding | sequence alignment | sequence alignment | genome assembly | genome assembly | Networks: Gene expression analysis | Networks: Gene expression analysis | regulatory motifs | regulatory motifs | graph algorithms | graph algorithms | scale-free networks | scale-free networks | network motifs | network motifs | network evolution | network evolution | Evolution: Comparative genomics | Evolution: Comparative genomics | phylogenetics | phylogenetics | genome duplication | genome duplication | genome rearrangements | genome rearrangements | evolutionary theory | evolutionary theory | rapid evolution | rapid evolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.047 Computational Biology (MIT) 6.047 Computational Biology (MIT)

Description

This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets. This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets.

Subjects

Genomes | Genomes | Networks | Networks | Evolution | Evolution | computational biology | computational biology | genomics | genomics | comparative genomics | comparative genomics | epigenomics | epigenomics | functional genomics | motifs | functional genomics | motifs | phylogenomics | phylogenomics | personal genomics | personal genomics | algorithms | algorithms | machine learning | machine learning | biology | biology | biological datasets | biological datasets | proteomics | proteomics | sequence analysis | sequence analysis | sequence alignment | sequence alignment | genome assembly | genome assembly | network motifs | network motifs | network evolution | network evolution | graph algorithms | graph algorithms | phylogenetics | phylogenetics | python | python | probability | probability | statistics | statistics | entropy | entropy | information | information

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.047 Computational Biology: Genomes, Networks, Evolution (MIT) 6.047 Computational Biology: Genomes, Networks, Evolution (MIT)

Description

This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include: Genomes: biological sequence analysis, hidden Markov models, gene finding, RNA folding, sequence alignment, genome assembly Networks: gene expression analysis, regulatory motifs, graph algorithms, scale-free networks, network motifs, network evolution Evolution: comparative genomics, phylogenetics, genome duplication, genome rearrangements, evolutionary theory, rapid evolution This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include: Genomes: biological sequence analysis, hidden Markov models, gene finding, RNA folding, sequence alignment, genome assembly Networks: gene expression analysis, regulatory motifs, graph algorithms, scale-free networks, network motifs, network evolution Evolution: comparative genomics, phylogenetics, genome duplication, genome rearrangements, evolutionary theory, rapid evolution

Subjects

computational biology | computational biology | algorithms | algorithms | machine learning | machine learning | biology | biology | biological datasets | biological datasets | genomics | genomics | proteomics | proteomics | genomes | genomes | sequence analysis | sequence analysis | sequence alignment | sequence alignment | genome assembly | genome assembly | network motifs | network motifs | network evolution | network evolution | graph algorithms | graph algorithms | phylogenetics | phylogenetics | comparative genomics | comparative genomics | python | python | probability | probability | statistics | statistics | entropy | entropy | information | information

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.89J Topics in Computational and Systems Biology (MIT) 7.89J Topics in Computational and Systems Biology (MIT)

Description

This is a seminar based on research literature. Papers covered are selected to illustrate important problems and approaches in the field of computational and systems biology, and provide students a framework from which to evaluate new developments. The MIT Initiative in Computational and Systems Biology (CSBi) is a campus-wide research and education program that links biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis and modeling of complex biological phenomena. This course is one of a series of core subjects offered through the CSB Ph.D. program, for students with an interest in interdisciplinary training and research in the area of computational and systems biology. This is a seminar based on research literature. Papers covered are selected to illustrate important problems and approaches in the field of computational and systems biology, and provide students a framework from which to evaluate new developments. The MIT Initiative in Computational and Systems Biology (CSBi) is a campus-wide research and education program that links biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis and modeling of complex biological phenomena. This course is one of a series of core subjects offered through the CSB Ph.D. program, for students with an interest in interdisciplinary training and research in the area of computational and systems biology.

Subjects

Computational Biology | Computational Biology | Systems Biology | Systems Biology | Genomics | Genomics | Protein Function | Protein Function | Nucleic Acid Binding Factors | Nucleic Acid Binding Factors | microarray analysis | microarray analysis | genome-wide mapping | genome-wide mapping | gene expression | gene expression | evolutionary dynamics | evolutionary dynamics | sequencing | sequencing | translation | translation | network motifs | network motifs | pathway modeling | pathway modeling | synthetic biology | synthetic biology | metagenomics | metagenomics | signal transduction | signal transduction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.895 Computational Biology: Genomes, Networks, Evolution (MIT)

Description

This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include:Genomes: Biological Sequence Analysis, Hidden Markov Models, Gene Finding, RNA Folding, Sequence Alignment, Genome Assembly.Networks: Gene Expression Analysis, Regulatory Motifs, Graph Algorithms, Scale-free Networks, Network Motifs, Network Evolution.Evolution: Comparative Genomics, Phylogenetics, Genome Duplication, Genome Rearrangements, Evolutionary Theory, Rapid Evolution.

Subjects

Genomes: Biological sequence analysis | hidden Markov models | gene finding | RNA folding | sequence alignment | genome assembly | Networks: Gene expression analysis | regulatory motifs | graph algorithms | scale-free networks | network motifs | network evolution | Evolution: Comparative genomics | phylogenetics | genome duplication | genome rearrangements | evolutionary theory | rapid evolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.047 Computational Biology (MIT)

Description

This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets.

Subjects

Genomes | Networks | Evolution | computational biology | genomics | comparative genomics | epigenomics | functional genomics | motifs | phylogenomics | personal genomics | algorithms | machine learning | biology | biological datasets | proteomics | sequence analysis | sequence alignment | genome assembly | network motifs | network evolution | graph algorithms | phylogenetics | python | probability | statistics | entropy | information

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.89J Topics in Computational and Systems Biology (MIT)

Description

This is a seminar based on research literature. Papers covered are selected to illustrate important problems and approaches in the field of computational and systems biology, and provide students a framework from which to evaluate new developments. The MIT Initiative in Computational and Systems Biology (CSBi) is a campus-wide research and education program that links biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis and modeling of complex biological phenomena. This course is one of a series of core subjects offered through the CSB Ph.D. program, for students with an interest in interdisciplinary training and research in the area of computational and systems biology.

Subjects

Computational Biology | Systems Biology | Genomics | Protein Function | Nucleic Acid Binding Factors | microarray analysis | genome-wide mapping | gene expression | evolutionary dynamics | sequencing | translation | network motifs | pathway modeling | synthetic biology | metagenomics | signal transduction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.881 Computational Personal Genomics: Making Sense of Complete Genomes (MIT)

Description

With the growing availability and lowering costs of genotyping and personal genome sequencing, the focus has shifted from the ability to obtain the sequence to the ability to make sense of the resulting information. This course is aimed at exploring the computational challenges associated with interpreting how sequence differences between individuals lead to phenotypic differences in gene expression, disease predisposition, or response to treatment.

Subjects

Genomes | Networks | Evolution | computational biology | genomics | comparative genomics | epigenomics | functional genomics | motifs | phylogenomics | personal genomics | algorithms | machine learning | biology | biological datasets | proteomics | sequence analysis | sequence alignment | genome assembly | network motifs | network evolution | graph algorithms | phylogenetics | python | probability | statistics | entropy | information

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Urnes. Animal

Description

Subjects

Location\Europe | animal | motifs | wood carving

License

 (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ Copyright belongs to Paul Oliver Vernacular Architecture Library Copyright belongs to Paul Oliver Vernacular Architecture Library

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9th C Urnes animal

Description

Subjects

Location\Europe | animal | motifs | wood carving

License

 (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ Copyright belongs to Paul Oliver Vernacular Architecture Library Copyright belongs to Paul Oliver Vernacular Architecture Library

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Jubbo, Pakistan. Kitchen area

Description

Subjects

Location\Asia | Decoration and Symbolism\Motifs\Tree of life | Decoration and Symbolism\Motifs\Swastika | cooking and heating | hearth | kitchen | motifs | swastika | tree of life

License

 (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ Copyright belongs to Paul Oliver Vernacular Architecture Library Copyright belongs to Paul Oliver Vernacular Architecture Library

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata