Searching for 16.910 : 3 results found | RSS Feed for this search

Description

6.336J is an introduction to computational techniques for the simulation of a large variety of engineering and physical systems. Applications are drawn from aerospace, mechanical, electrical, chemical and biological engineering, and materials science. Topics include: mathematical formulations; network problems; sparse direct and iterative matrix solution techniques; Newton methods for nonlinear problems; discretization methods for ordinary, time-periodic and partial differential equations, fast methods for partial differential and integral equations, techniques for dynamical system model reduction and approaches for molecular dynamics. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5211 (Introduction to Numerical Simulation). 6.336J is an introduction to computational techniques for the simulation of a large variety of engineering and physical systems. Applications are drawn from aerospace, mechanical, electrical, chemical and biological engineering, and materials science. Topics include: mathematical formulations; network problems; sparse direct and iterative matrix solution techniques; Newton methods for nonlinear problems; discretization methods for ordinary, time-periodic and partial differential equations, fast methods for partial differential and integral equations, techniques for dynamical system model reduction and approaches for molecular dynamics. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5211 (Introduction to Numerical Simulation).Subjects

Numerical Simulation | Numerical Simulation | simulation | simulation | mathematics | mathematics | network problems | network problems | matrix solution | matrix solution | Newton method | Newton method | nonlinear problems | nonlinear problems | discretization methods | discretization methods | differential equations | differential equations | integral equations | integral equations | model-order reduction | model-order reduction | Monte Carlo | Monte Carlo | 6.336 | 6.336 | 2.096 | 2.096 | 16.910 | 16.910License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.336J Introduction to Numerical Simulation (SMA 5211) (MIT)

Description

6.336J is an introduction to computational techniques for the simulation of a large variety of engineering and physical systems. Applications are drawn from aerospace, mechanical, electrical, chemical and biological engineering, and materials science. Topics include: mathematical formulations; network problems; sparse direct and iterative matrix solution techniques; Newton methods for nonlinear problems; discretization methods for ordinary, time-periodic and partial differential equations, fast methods for partial differential and integral equations, techniques for dynamical system model reduction and approaches for molecular dynamics. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5211 (Introduction to Numerical Simulation).Subjects

Numerical Simulation | simulation | mathematics | network problems | matrix solution | Newton method | nonlinear problems | discretization methods | differential equations | integral equations | model-order reduction | Monte Carlo | 6.336 | 2.096 | 16.910License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.336J Introduction to Numerical Simulation (SMA 5211) (MIT)

Description

6.336J is an introduction to computational techniques for the simulation of a large variety of engineering and physical systems. Applications are drawn from aerospace, mechanical, electrical, chemical and biological engineering, and materials science. Topics include: mathematical formulations; network problems; sparse direct and iterative matrix solution techniques; Newton methods for nonlinear problems; discretization methods for ordinary, time-periodic and partial differential equations, fast methods for partial differential and integral equations, techniques for dynamical system model reduction and approaches for molecular dynamics. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5211 (Introduction to Numerical Simulation).Subjects

Numerical Simulation | simulation | mathematics | network problems | matrix solution | Newton method | nonlinear problems | discretization methods | differential equations | integral equations | model-order reduction | Monte Carlo | 6.336 | 2.096 | 16.910License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata