Searching for 8.02 : 2 results found | RSS Feed for this search

Magnetism with an Experimental Focus (MIT) Magnetism with an Experimental Focus (MIT)

Description

This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli. This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.

Subjects

Electromagnetism | Electromagnetism | electrostatics | electrostatics | electric charge | electric charge | Coulomb's law | Coulomb's law | electric structure of matter | electric structure of matter | conductors | conductors | dielectrics | dielectrics | electrostatic field | electrostatic field | electrostatic potential | electrostatic potential | electrostatic energy | electrostatic energy | electric current | electric current | magnetic field | magnetic field | Ampere's law | Ampere's law | magnetic | magnetic | electric | electric | time-varying fields | time-varying fields | Faraday's law | Faraday's law | induction | induction | circuits | circuits | electromagnetic waves | electromagnetic waves | Maxwell's equations | Maxwell's equations | 8.02 | 8.02

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetism with an Experimental Focus (MIT)

Description

This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.

Subjects

Electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | electrostatic potential | electrostatic energy | electric current | magnetic field | Ampere's law | magnetic | electric | time-varying fields | Faraday's law | induction | circuits | electromagnetic waves | Maxwell's equations | 8.02

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata