Searching for BMDC : 2 results found | RSS Feed for this search

HST.525J Tumor Pathophysiology and Transport Phenomena (MIT) HST.525J Tumor Pathophysiology and Transport Phenomena (MIT)

Description

Tumor pathophysiology plays a central role in the growth, invasion, metastasis and treatment of solid tumors. This class applies principles of transport phenomena to develop a systems-level, quantitative understanding of angiogenesis, blood flow and microcirculation, metabolism and microenvironment, transport and binding of small and large molecules, movement of cancer and immune cells, metastatic process, and treatment response. Additional Faculty Dr. Pat D'Amore Dr. Dan Duda Dr. Robert Langer Prof. Robert Weinberg Dr. Marsha Moses Dr. Raghu Kalluri Dr. Lance Munn Tumor pathophysiology plays a central role in the growth, invasion, metastasis and treatment of solid tumors. This class applies principles of transport phenomena to develop a systems-level, quantitative understanding of angiogenesis, blood flow and microcirculation, metabolism and microenvironment, transport and binding of small and large molecules, movement of cancer and immune cells, metastatic process, and treatment response. Additional Faculty Dr. Pat D'Amore Dr. Dan Duda Dr. Robert Langer Prof. Robert Weinberg Dr. Marsha Moses Dr. Raghu Kalluri Dr. Lance Munn

Subjects

HST.525 | HST.525 | 10.548 | 10.548 | tumor | tumor | cancer | cancer | tumor vasculature | tumor vasculature | antiangiogenesis | antiangiogenesis | bone marrow-derived stem cells | bone marrow-derived stem cells | BMDC | BMDC | stem cell research | stem cell research | experimental cancer therapy | experimental cancer therapy | cancer research | cancer research | tumor-host interactions | tumor-host interactions | vascular normalization | vascular normalization | vascular transport | vascular transport | interstitial transport | interstitial transport | lymphatic transport | lymphatic transport | microcirculation | microcirculation | molecular therapeutics | molecular therapeutics | blood vessels | blood vessels | angiogenesis | angiogenesis | drug delivery | drug delivery | intravital microscopy | intravital microscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.525J Tumor Pathophysiology and Transport Phenomena (MIT)

Description

Tumor pathophysiology plays a central role in the growth, invasion, metastasis and treatment of solid tumors. This class applies principles of transport phenomena to develop a systems-level, quantitative understanding of angiogenesis, blood flow and microcirculation, metabolism and microenvironment, transport and binding of small and large molecules, movement of cancer and immune cells, metastatic process, and treatment response. Additional Faculty Dr. Pat D'Amore Dr. Dan Duda Dr. Robert Langer Prof. Robert Weinberg Dr. Marsha Moses Dr. Raghu Kalluri Dr. Lance Munn

Subjects

HST.525 | 10.548 | tumor | cancer | tumor vasculature | antiangiogenesis | bone marrow-derived stem cells | BMDC | stem cell research | experimental cancer therapy | cancer research | tumor-host interactions | vascular normalization | vascular transport | interstitial transport | lymphatic transport | microcirculation | molecular therapeutics | blood vessels | angiogenesis | drug delivery | intravital microscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata