Searching for ECM : 10 results found | RSS Feed for this search

20.442 Molecular Structure of Biological Materials (BE.442) (MIT) 20.442 Molecular Structure of Biological Materials (BE.442) (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | protein | hydration | hydration | amino acid | amino acid | ECM | ECM | extracellular matrix | extracellular matrix | peptide | peptide | helix | helix | DNA | DNA | RNA | RNA | biomaterial | biomaterial | biotech | biotech | biotechnology | biotechnology | nanomaterial | nanomaterial | beta-sheet | beta-sheet | beta sheet | beta sheet | molecular structure | molecular structure | bioengineering | bioengineering | silk | silk | biomimetic | biomimetic | self-assembly | self-assembly | keratin | keratin | collagen | collagen | adhesive | adhesive | GFP | GFP | fluorescent | fluorescent | polymer | polymer | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.442 Molecular Structure of Biological Materials (MIT) BE.442 Molecular Structure of Biological Materials (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | protein | hydration | hydration | amino acid | amino acid | ECM | ECM | extracellular matrix | extracellular matrix | peptide | peptide | helix | helix | DNA | DNA | RNA | RNA | biomaterial | biomaterial | biotech | biotech | biotechnology | biotechnology | nanomaterial | nanomaterial | beta-sheet | beta-sheet | beta sheet | beta sheet | molecular structure | molecular structure | bioengineering | bioengineering | silk | silk | biomimetic | biomimetic | self-assembly | self-assembly | keratin | keratin | collagen | collagen | adhesive | adhesive | GFP | GFP | fluorescent | fluorescent | polymer | polymer | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.442 Molecular Structure of Biological Materials (BE.442) (MIT) 20.442 Molecular Structure of Biological Materials (BE.442) (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | protein | hydration | hydration | amino acid | amino acid | ECM | ECM | extracellular matrix | extracellular matrix | peptide | peptide | helix | helix | DNA | DNA | RNA | RNA | biomaterial | biomaterial | biotech | biotech | biotechnology | biotechnology | nanomaterial | nanomaterial | beta-sheet | beta-sheet | beta sheet | beta sheet | molecular structure | molecular structure | bioengineering | bioengineering | silk | silk | biomimetic | biomimetic | self-assembly | self-assembly | keratin | keratin | collagen | collagen | adhesive | adhesive | GFP | GFP | fluorescent | fluorescent | polymer | polymer | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.535 Principles and Practice of Tissue Engineering (MIT) HST.535 Principles and Practice of Tissue Engineering (MIT)

Description

The principles and practice of tissue engineering (and regenerative medicine) are taught by faculty of the Harvard-MIT Division of Health Sciences and Technology (HST) and Tsinghua University, Beijing, China. The principles underlying strategies for employing selected cells, biomaterial scaffolds, soluble regulators or their genes, and mechanical loading and culture conditions, for the regeneration of tissues and organs in vitro and in vivo are addressed. Differentiated cell types and stem cells are compared and contrasted for this application, as are natural and synthetic scaffolds. Methodology for the preparation of cells and scaffolds in practice is described. The rationale for employing selected growth factors is covered and the techniques for incorporating their genes into the scaffol The principles and practice of tissue engineering (and regenerative medicine) are taught by faculty of the Harvard-MIT Division of Health Sciences and Technology (HST) and Tsinghua University, Beijing, China. The principles underlying strategies for employing selected cells, biomaterial scaffolds, soluble regulators or their genes, and mechanical loading and culture conditions, for the regeneration of tissues and organs in vitro and in vivo are addressed. Differentiated cell types and stem cells are compared and contrasted for this application, as are natural and synthetic scaffolds. Methodology for the preparation of cells and scaffolds in practice is described. The rationale for employing selected growth factors is covered and the techniques for incorporating their genes into the scaffol

Subjects

tissue engineering | tissue engineering | scaffold | scaffold | cell | cell | stem cell | stem cell | collagen | collagen | GAG | GAG | ECM | ECM | extracellular matrix | extracellular matrix | biomimetics | biomimetics | healing | healing | skin | skin | nerve | nerve | bone | bone | cartilage | cartilage

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.442 Molecular Structure of Biological Materials (BE.442) (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | hydration | amino acid | ECM | extracellular matrix | peptide | helix | DNA | RNA | biomaterial | biotech | biotechnology | nanomaterial | beta-sheet | beta sheet | molecular structure | bioengineering | silk | biomimetic | self-assembly | keratin | collagen | adhesive | GFP | fluorescent | polymer | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.535 Principles and Practice of Tissue Engineering (MIT)

Description

The principles and practice of tissue engineering (and regenerative medicine) are taught by faculty of the Harvard-MIT Division of Health Sciences and Technology (HST) and Tsinghua University, Beijing, China. The principles underlying strategies for employing selected cells, biomaterial scaffolds, soluble regulators or their genes, and mechanical loading and culture conditions, for the regeneration of tissues and organs in vitro and in vivo are addressed. Differentiated cell types and stem cells are compared and contrasted for this application, as are natural and synthetic scaffolds. Methodology for the preparation of cells and scaffolds in practice is described. The rationale for employing selected growth factors is covered and the techniques for incorporating their genes into the scaffol

Subjects

tissue engineering | scaffold | cell | stem cell | collagen | GAG | ECM | extracellular matrix | biomimetics | healing | skin | nerve | bone | cartilage

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.442 Molecular Structure of Biological Materials (BE.442) (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | hydration | amino acid | ECM | extracellular matrix | peptide | helix | DNA | RNA | biomaterial | biotech | biotechnology | nanomaterial | beta-sheet | beta sheet | molecular structure | bioengineering | silk | biomimetic | self-assembly | keratin | collagen | adhesive | GFP | fluorescent | polymer | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.442 Molecular Structure of Biological Materials (BE.442) (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | hydration | amino acid | ECM | extracellular matrix | peptide | helix | DNA | RNA | biomaterial | biotech | biotechnology | nanomaterial | beta-sheet | beta sheet | molecular structure | bioengineering | silk | biomimetic | self-assembly | keratin | collagen | adhesive | GFP | fluorescent | polymer | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.442 Molecular Structure of Biological Materials (BE.442) (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | hydration | amino acid | ECM | extracellular matrix | peptide | helix | DNA | RNA | biomaterial | biotech | biotechnology | nanomaterial | beta-sheet | beta sheet | molecular structure | bioengineering | silk | biomimetic | self-assembly | keratin | collagen | adhesive | GFP | fluorescent | polymer | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.442 Molecular Structure of Biological Materials (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | hydration | amino acid | ECM | extracellular matrix | peptide | helix | DNA | RNA | biomaterial | biotech | biotechnology | nanomaterial | beta-sheet | beta sheet | molecular structure | bioengineering | silk | biomimetic | self-assembly | keratin | collagen | adhesive | GFP | fluorescent | polymer | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata