Searching for Earth : 82 results found | RSS Feed for this search

1 2 3

12.510 Introduction to Seismology (MIT) 12.510 Introduction to Seismology (MIT)

Description

This graduate level course presents a basic study in seismology and the utilization of seismic waves for the study of Earth's interior. It introduces techniques necessary for understanding of elastic wave propagation in layered media. This graduate level course presents a basic study in seismology and the utilization of seismic waves for the study of Earth's interior. It introduces techniques necessary for understanding of elastic wave propagation in layered media.

Subjects

seismology | seismology | utilization of seismic waves | utilization of seismic waves | Earth's interior | Earth's interior | elastic wave propagation in stratified media | elastic wave propagation in stratified media | synthetic seismograms | synthetic seismograms | WKBJ | WKBJ | mode summation | mode summation | Ray theory | Ray theory | interpretation of travel times | interpretation of travel times | surface wave dispersion in layered media | surface wave dispersion in layered media | Earth's free oscillations | Earth's free oscillations | seismicity | seismicity | earthquake locations | earthquake locations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.510 Introduction to Seismology (MIT) 12.510 Introduction to Seismology (MIT)

Description

This graduate level course presents a basic study in seismology and the utilization of seismic waves for the study of Earth's interior. It introduces techniques necessary for understanding of elastic wave propagation in layered media. This graduate level course presents a basic study in seismology and the utilization of seismic waves for the study of Earth's interior. It introduces techniques necessary for understanding of elastic wave propagation in layered media.

Subjects

seismology | seismology | utilization of seismic waves | utilization of seismic waves | Earth's interior | Earth's interior | elastic wave propagation in stratified media | elastic wave propagation in stratified media | synthetic seismograms | synthetic seismograms | WKBJ | WKBJ | mode summation | mode summation | Ray theory | Ray theory | interpretation of travel times | interpretation of travel times | surface wave dispersion in layered media | surface wave dispersion in layered media | Earth's free oscillations | Earth's free oscillations | seismicity | seismicity | earthquake locations | earthquake locations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.007 Geobiology (MIT) 12.007 Geobiology (MIT)

Description

The interactive Earth system: biology in geologic, environmental and climate change throughout Earth history. Since life began it has continually shaped and re-shaped the atmosphere, hydrosphere, cryosphere and the solid earth. This course introduces the concept of 'life as a geological agent' and examines the interaction between biology and the earth system during the roughly 4 billion years since life first appeared. The interactive Earth system: biology in geologic, environmental and climate change throughout Earth history. Since life began it has continually shaped and re-shaped the atmosphere, hydrosphere, cryosphere and the solid earth. This course introduces the concept of 'life as a geological agent' and examines the interaction between biology and the earth system during the roughly 4 billion years since life first appeared.

Subjects

interactive Earth system;biology | interactive Earth system;biology | geologic | geologic | environmental and climate change | environmental and climate change | atmosphere | atmosphere | hydrosphere | hydrosphere | cryosphere | cryosphere | solar system | solar system | evolution;global warming | evolution;global warming | global carbon cycle | global carbon cycle | Astrobiology. | Astrobiology. | evolution | evolution | global warming | global warming | Interactive earth system | Interactive earth system | biology | biology | geologic change | geologic change | environmental change | environmental change | climate change | climate change | Earth history | Earth history | life | life | solid earth | solid earth | geological agent | geological agent | astrobiology | astrobiology | biogeomorphology | biogeomorphology | long-term climate cycles | long-term climate cycles | mass extinctions | mass extinctions | biogeochemical tracers | biogeochemical tracers | origin of life | origin of life | antiquity | antiquity | habitable zone | habitable zone | deep biosphere | deep biosphere | geological time | geological time

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.581 Phase Transitions in the Earth's Interior (MIT) 12.581 Phase Transitions in the Earth's Interior (MIT)

Description

This course discusses phase transitions in Earth's interior. Phase transitions in Earth materials at high pressures and temperatures cause the seismic discontinuities and affect the convections in the Earth's interior. On the other hand, they enable us to constrain temperature and chemical compositions in the Earth's interior. However, among many known phase transitions in mineral physics, only a few have been investigated in seismology and geodynamics. This course reviews important papers about phase transitions in mantle and core materials. This course discusses phase transitions in Earth's interior. Phase transitions in Earth materials at high pressures and temperatures cause the seismic discontinuities and affect the convections in the Earth's interior. On the other hand, they enable us to constrain temperature and chemical compositions in the Earth's interior. However, among many known phase transitions in mineral physics, only a few have been investigated in seismology and geodynamics. This course reviews important papers about phase transitions in mantle and core materials.

Subjects

Earth | Earth | mantle | mantle | phase transitions | phase transitions | transition zone | transition zone | post-spinel transition | post-spinel transition | seismic discontinuities | seismic discontinuities | D'' discontinuity | D'' discontinuity | D'' anisotropy | D'' anisotropy | post-perovskite transition and spin transition | post-perovskite transition and spin transition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.201 Essentials of Geophysics (MIT) 12.201 Essentials of Geophysics (MIT)

Description

This course is designed to be a survey of the various subdisciplines of geophysics (geodesy, gravity, geomagnetism, seismology, and geodynamics) and how they might relate to or be relevant for other planets. No prior background in Earth sciences is assumed, but students should be comfortable with vector calculus, classical mechanics, and potential field theory. This course is designed to be a survey of the various subdisciplines of geophysics (geodesy, gravity, geomagnetism, seismology, and geodynamics) and how they might relate to or be relevant for other planets. No prior background in Earth sciences is assumed, but students should be comfortable with vector calculus, classical mechanics, and potential field theory.

Subjects

Earth | Earth | Solar System | Solar System | Geophysics | Geophysics | Gravitational Field | Gravitational Field | Magnetic Field | Magnetic Field | Seismology | Seismology | Geodynamics | Geodynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.540 Principles of the Global Positioning System (MIT) 12.540 Principles of the Global Positioning System (MIT)

Description

The aim of this course is to introduce the principles of the Global Positioning System and to demonstrate its application to various aspects of Earth Sciences. The specific content of the course depends each year on the interests of the students in the class. In some cases, the class interests are towards the geophysical applications of GPS and we concentrate on high precision(millimeter level) positioning on regional and global scales. In other cases, the interests have been more toward engineering applications of kinematic positioning with GPS in which case the concentration is on positioning with slightly less accuracy but being able to do so for a moving object. In all cases, we concentrate on the fundamen The aim of this course is to introduce the principles of the Global Positioning System and to demonstrate its application to various aspects of Earth Sciences. The specific content of the course depends each year on the interests of the students in the class. In some cases, the class interests are towards the geophysical applications of GPS and we concentrate on high precision(millimeter level) positioning on regional and global scales. In other cases, the interests have been more toward engineering applications of kinematic positioning with GPS in which case the concentration is on positioning with slightly less accuracy but being able to do so for a moving object. In all cases, we concentrate on the fundamen

Subjects

Global Positioning System | Global Positioning System | Earth Sciences | Earth Sciences | geophysical applications | geophysical applications | GPS | GPS | engineering applications | engineering applications | kinematic positioning | kinematic positioning | precision | precision | accuracy | accuracy | moving objects | moving objects | coordinate | coordinate | time | time | systems | systems | satellite | satellite | geodetic | geodetic | orbital | orbital | motions | motions | pseudo ranges | pseudo ranges | carrier phases | carrier phases | stochastic | stochastic | mathematics | mathematics | models | models | data | data | analysis | analysis | estimation | estimation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21H.207 The Energy Crisis: Past and Present (MIT) 21H.207 The Energy Crisis: Past and Present (MIT)

Description

This course will explore how Americans have confronted energy challenges since the end of World War II. Beginning in the 1970s, Americans worried about the supply of energy. As American production of oil declined, would the US be able to secure enough fuel to sustain their high consumption lifestyles? At the same time, Americans also began to fear the environmental side affects of energy use. Even if the US had enough fossil fuel, would its consumption be detrimental to health and safety? This class examines how Americans thought about these questions in the last half-century. We will consider the political, diplomatic, economic, cultural, and technological aspects of the energy crisis. Topics include nuclear power, suburbanization and the new car culture, the environmental movement and th This course will explore how Americans have confronted energy challenges since the end of World War II. Beginning in the 1970s, Americans worried about the supply of energy. As American production of oil declined, would the US be able to secure enough fuel to sustain their high consumption lifestyles? At the same time, Americans also began to fear the environmental side affects of energy use. Even if the US had enough fossil fuel, would its consumption be detrimental to health and safety? This class examines how Americans thought about these questions in the last half-century. We will consider the political, diplomatic, economic, cultural, and technological aspects of the energy crisis. Topics include nuclear power, suburbanization and the new car culture, the environmental movement and th

Subjects

energy | energy | USA | USA | oil embargo | oil embargo | Gulf War | Gulf War | Richard Nixon | Richard Nixon | Ronald Reagan | Ronald Reagan | Jimmy Carter | Jimmy Carter | George Bush | George Bush | nuclear power | nuclear power | wind power | wind power | fossil fuel | fossil fuel | automobiles | automobiles | suburbia | suburbia | Iran Hostage Crisis | Iran Hostage Crisis | climate change | climate change | global warming | global warming | oil drilling | oil drilling | Kyoto Protocol | Kyoto Protocol | solar power | solar power | OPEC | OPEC | EPA | EPA | Earth Day | Earth Day | environmentalism | environmentalism | atomic bomb | atomic bomb | Gerald Ford | Gerald Ford | Levittown | Levittown | Manhattan Project | Manhattan Project

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.570 Structure and Dynamics of the CMB Region (MIT) 12.570 Structure and Dynamics of the CMB Region (MIT)

Description

The Core Mantle Boundary (CMB) represents one of the most important physical and chemical discontinuities of the deep Earth as it separates the solid state, convective lower mantle from the liquid outer core. In this seminar course, the instructors will examine our current understanding of the CMB region from integrated seismological, mineral physics and geodynamical perspectives. Instructors will also introduce state-of-the-art methodologies that are employed to characterize the CMB region and relevant papers will be discussed in class. Topics will include CMB detection and topography, D'' anisotropy, seismic velocity anomalies (e.g., ultra-low velocity zones), temperature, chemical reactions, phase relations, and mineral fabrications at the core-mantle boundary. These results will be i The Core Mantle Boundary (CMB) represents one of the most important physical and chemical discontinuities of the deep Earth as it separates the solid state, convective lower mantle from the liquid outer core. In this seminar course, the instructors will examine our current understanding of the CMB region from integrated seismological, mineral physics and geodynamical perspectives. Instructors will also introduce state-of-the-art methodologies that are employed to characterize the CMB region and relevant papers will be discussed in class. Topics will include CMB detection and topography, D'' anisotropy, seismic velocity anomalies (e.g., ultra-low velocity zones), temperature, chemical reactions, phase relations, and mineral fabrications at the core-mantle boundary. These results will be i

Subjects

Core Mantle Boundary (CMB) | Core Mantle Boundary (CMB) | deep Earth | deep Earth | lower mantle | lower mantle | outer core | outer core | integrated seismological | integrated seismological | mineral physics and geodynamical perspectives | mineral physics and geodynamical perspectives | CMB detection and topography | CMB detection and topography | D'' anisotropy | D'' anisotropy | seismic velocity anomalies (e.g. | seismic velocity anomalies (e.g. | ultra-low velocity zones) | ultra-low velocity zones) | temperature | temperature | chemical reactions | chemical reactions | phase relations | phase relations | mineral fabrications | mineral fabrications | cmb detection | cmb detection | topography | topography | mineral physics | mineral physics | geodynamical perspectives | geodynamical perspectives | D" Region | D" Region | ultra-low velocity zones | ultra-low velocity zones | partial melting | partial melting | mineral texture | mineral texture | core rigidity zones | core rigidity zones | sedimentation | sedimentation | mantle flow | mantle flow | core mantle coupling | core mantle coupling | geomagnetic field | geomagnetic field

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Adobe walls. Amasya

Description

Subjects

Structural Systems and Technologies\Supports and Floors\Wall\Earth wall | Materials and Resources\Earths and Clays\Brick\Sun-dried brick: adobe | Location\Europe | Location\Asia | earth and clays | sun-dried brick | supports and floors | earth wall | adobe

License

 (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ Copyright belongs to Paul Oliver Vernacular Architecture Library Copyright belongs to Paul Oliver Vernacular Architecture Library

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.215 Modern Navigation (MIT) 12.215 Modern Navigation (MIT)

Description

The development of the Global Positioning System (GPS) started in the 1960s, and the system became operational in 1992. The system has seen many diverse applications develop in the last few years with the accuracy of positioning ranging from 100 meters (the civilian restricted accuracy requirement) to 1 millimeter (without the need for a security clearance!) In this course we will apply many of basic principles of science and mathematics learnt at MIT to explore the applications and principles of GPS. We also use GPS and other equipment in the class (and outside on Campus) to demonstrate the uses of this system.Technical RequirementsAny number of development tools can be used to compile and run the .f files found on this course site. Please refer to the The development of the Global Positioning System (GPS) started in the 1960s, and the system became operational in 1992. The system has seen many diverse applications develop in the last few years with the accuracy of positioning ranging from 100 meters (the civilian restricted accuracy requirement) to 1 millimeter (without the need for a security clearance!) In this course we will apply many of basic principles of science and mathematics learnt at MIT to explore the applications and principles of GPS. We also use GPS and other equipment in the class (and outside on Campus) to demonstrate the uses of this system.Technical RequirementsAny number of development tools can be used to compile and run the .f files found on this course site. Please refer to the

Subjects

Global Positioning | Global Positioning | Global Positioning System | Global Positioning System | GPScivilian restricted accuracy requirment | GPScivilian restricted accuracy requirment | basic principles | basic principles | science | science | mathematics | mathematics | GPS | GPS | navigation | navigation | accuracy | accuracy | civilian | civilian | application | application | coordinate systems | coordinate systems | lattitude | lattitude | longitude | longitude | deformable | deformable | Earth | Earth | estimation | estimation | aircraft | aircraft | stochastic | stochastic | mathematical | mathematical | models | models | statistics | statistics | dynamic systems | dynamic systems | pseudorange | pseudorange | phase measurements | phase measurements | celestial | celestial | sattelite | sattelite | astronomical observations | astronomical observations | radio | radio | ship | ship | automobile | automobile

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.007 Geobiology (MIT)

Description

The interactive Earth system: biology in geologic, environmental and climate change throughout Earth history. Since life began it has continually shaped and re-shaped the atmosphere, hydrosphere, cryosphere and the solid earth. This course introduces the concept of 'life as a geological agent' and examines the interaction between biology and the earth system during the roughly 4 billion years since life first appeared.

Subjects

interactive Earth system;biology | geologic | environmental and climate change | atmosphere | hydrosphere | cryosphere | solar system | evolution;global warming | global carbon cycle | Astrobiology. | evolution | global warming | Interactive earth system | biology | geologic change | environmental change | climate change | Earth history | life | solid earth | geological agent | astrobiology | biogeomorphology | long-term climate cycles | mass extinctions | biogeochemical tracers | origin of life | antiquity | habitable zone | deep biosphere | geological time

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.175 Theory of Probability (MIT) 18.175 Theory of Probability (MIT)

Description

This course covers the laws of large numbers and central limit theorems for sums of independent random variables. It also analyzes topics such as the conditioning and martingales, the Brownian motion and the elements of diffusion theory. This course covers the laws of large numbers and central limit theorems for sums of independent random variables. It also analyzes topics such as the conditioning and martingales, the Brownian motion and the elements of diffusion theory.

Subjects

Earth | Earth | Solar System | Solar System | Geophysics | Geophysics | Gravitational Field | Gravitational Field | Magnetic Field | Magnetic Field | Seismology | Seismology | Geodynamics | Geodynamics | Laws of large numbers | Laws of large numbers | central limit theorems for sums of independent random variables | central limit theorems for sums of independent random variables | conditioning and martingales | conditioning and martingales | Brownian motion and elements of diffusion theory | Brownian motion and elements of diffusion theory | functional limit theorems | functional limit theorems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.510 Introduction to Seismology (MIT)

Description

This graduate level course presents a basic study in seismology and the utilization of seismic waves for the study of Earth's interior. It introduces techniques necessary for understanding of elastic wave propagation in layered media.

Subjects

seismology | utilization of seismic waves | Earth's interior | elastic wave propagation in stratified media | synthetic seismograms | WKBJ | mode summation | Ray theory | interpretation of travel times | surface wave dispersion in layered media | Earth's free oscillations | seismicity | earthquake locations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.000 Solving Complex Problems (MIT) 12.000 Solving Complex Problems (MIT)

Description

Includes audio/video content: AV faculty introductions. Solving Complex Problems provides an opportunity for entering freshmen to gain first-hand experience with working as part of a team to develop effective approaches to complex problems in Earth system science and engineering that do not have straightforward solutions. The subject includes training in a variety of skills, ranging from library research to Web Design. Each year's course explores a different problem in detail through the study of complimentary case histories and the development of creative solution strategies. Beginning in 2000 as an educational experiment sponsored by MIT's Committee on the Undergraduate Program, and receiving major financial support from the Alex and Britt d'Arbeloff Fund for Excellence in Includes audio/video content: AV faculty introductions. Solving Complex Problems provides an opportunity for entering freshmen to gain first-hand experience with working as part of a team to develop effective approaches to complex problems in Earth system science and engineering that do not have straightforward solutions. The subject includes training in a variety of skills, ranging from library research to Web Design. Each year's course explores a different problem in detail through the study of complimentary case histories and the development of creative solution strategies. Beginning in 2000 as an educational experiment sponsored by MIT's Committee on the Undergraduate Program, and receiving major financial support from the Alex and Britt d'Arbeloff Fund for Excellence in

Subjects

small teams | small teams | effective solutions | effective solutions | complex problems | complex problems | Earth system science and engineering | Earth system science and engineering | complementary case histories | complementary case histories | creative solution strategies | creative solution strategies | Web site development | Web site development | effective written and oral communication | effective written and oral communication | team building | team building

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.510 Introduction to Seismology (MIT)

Description

This graduate level course presents a basic study in seismology and the utilization of seismic waves for the study of Earth's interior. It introduces techniques necessary for understanding of elastic wave propagation in layered media.

Subjects

seismology | utilization of seismic waves | Earth's interior | elastic wave propagation in stratified media | synthetic seismograms | WKBJ | mode summation | Ray theory | interpretation of travel times | surface wave dispersion in layered media | Earth's free oscillations | seismicity | earthquake locations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Minerals and the crystalline state Minerals and the crystalline state

Description

Rocks are made of minerals and, as minerals are natural crystals, the geological world is mostly a crystalline world. This free course, Minerals and the crystalline state, introduces the study of minerals and crystal structures, using online text and interactive activities, including questions and answers, video clips, slidecasts and a Digital Kit. First published on Tue, 22 Mar 2016 as Minerals and the crystalline state. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 Rocks are made of minerals and, as minerals are natural crystals, the geological world is mostly a crystalline world. This free course, Minerals and the crystalline state, introduces the study of minerals and crystal structures, using online text and interactive activities, including questions and answers, video clips, slidecasts and a Digital Kit. First published on Tue, 22 Mar 2016 as Minerals and the crystalline state. To find out more visit The Open University's Openlearn website. Creative-Commons 2016

Subjects

Science | Science | Geology | Geology | S209_1 | S209_1 | minerals | minerals | crystals | crystals | geology | geology | mineralogy | mineralogy | crystallography | crystallography | Earth sciences | Earth sciences

License

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

Site sourced from

http://www.open.edu/openlearn/rss/try-content

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.175 Theory of Probability (MIT) 18.175 Theory of Probability (MIT)

Description

This course covers the laws of large numbers and central limit theorems for sums of independent random variables. It also analyzes topics such as the conditioning and martingales, the Brownian motion and the elements of diffusion theory. This course covers the laws of large numbers and central limit theorems for sums of independent random variables. It also analyzes topics such as the conditioning and martingales, the Brownian motion and the elements of diffusion theory.

Subjects

Earth | Earth | Solar System | Solar System | Geophysics | Geophysics | Gravitational Field | Gravitational Field | Magnetic Field | Magnetic Field | Seismology | Seismology | Geodynamics | Geodynamics | Laws of large numbers | Laws of large numbers | central limit theorems for sums of independent random variables | central limit theorems for sums of independent random variables | conditioning and martingales | conditioning and martingales | Brownian motion and elements of diffusion theory | Brownian motion and elements of diffusion theory | functional limit theorems | functional limit theorems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.175 Theory of Probability (MIT) 18.175 Theory of Probability (MIT)

Description

This course covers the laws of large numbers and central limit theorems for sums of independent random variables. It also analyzes topics such as the conditioning and martingales, the Brownian motion and the elements of diffusion theory. This course covers the laws of large numbers and central limit theorems for sums of independent random variables. It also analyzes topics such as the conditioning and martingales, the Brownian motion and the elements of diffusion theory.

Subjects

Earth | Earth | Solar System | Solar System | Geophysics | Geophysics | Gravitational Field | Gravitational Field | Magnetic Field | Magnetic Field | Seismology | Seismology | Geodynamics | Geodynamics | Laws of large numbers | Laws of large numbers | central limit theorems for sums of independent random variables | central limit theorems for sums of independent random variables | conditioning and martingales | conditioning and martingales | Brownian motion and elements of diffusion theory | Brownian motion and elements of diffusion theory | functional limit theorems | functional limit theorems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.001 Introduction to Geology (MIT) 12.001 Introduction to Geology (MIT)

Description

This course introduces students to the basics of geology. Through a combination of lectures, labs, and field observations, we will address topics ranging from formation of the elements, mineral and rock identification, and geological mapping to plate tectonics, erosion and climate engineering. This course introduces students to the basics of geology. Through a combination of lectures, labs, and field observations, we will address topics ranging from formation of the elements, mineral and rock identification, and geological mapping to plate tectonics, erosion and climate engineering.

Subjects

geology | geology | mineral | mineral | Igneous Rock | Igneous Rock | Sedimentary Rock | Sedimentary Rock | Metamorphic Rock | Metamorphic Rock | Paleontology | Paleontology | Rock Deformation | Rock Deformation | Rheology | Rheology | Volcanoes | Volcanoes | Plate Tectonics | Plate Tectonics | Earthquakes | Earthquakes | Field Techniques | Field Techniques | Topography | Topography

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.091 Basics of Analysis with Antineutrinos from Heat Producing Elements - K, U, Th in the Earth (MIT) 12.091 Basics of Analysis with Antineutrinos from Heat Producing Elements - K, U, Th in the Earth (MIT)

Description

This course covers the following questions. What are the predominant heat producing elements of the Earth? Where and how much are they? Are they present in the core of the Earth? Detection of antineutrinos generated in the Earth provides: 1) information on the sources of the terrestrial heat, 2) direct test of the Bulk Silicate Earth (BSE) model and 3) testing of non-conventional models of Earth's core. Use of antineutrinos to probe the deep interior of our planet is becoming practical due to recent fundamental advances in the antineutrino detectors. This course covers the following questions. What are the predominant heat producing elements of the Earth? Where and how much are they? Are they present in the core of the Earth? Detection of antineutrinos generated in the Earth provides: 1) information on the sources of the terrestrial heat, 2) direct test of the Bulk Silicate Earth (BSE) model and 3) testing of non-conventional models of Earth's core. Use of antineutrinos to probe the deep interior of our planet is becoming practical due to recent fundamental advances in the antineutrino detectors.

Subjects

antineutrinos | antineutrinos | antineutrino detectors | antineutrino detectors | antineutrino analysis | antineutrino analysis | antineutrino radiations | antineutrino radiations | radiogenic heat | radiogenic heat | terrestrial heat flow | terrestrial heat flow | Bulk Silicate Earth (BSE) model | Bulk Silicate Earth (BSE) model

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.800 Fluid Dynamics of the Atmosphere and Ocean (MIT) 12.800 Fluid Dynamics of the Atmosphere and Ocean (MIT)

Description

This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. File decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site. This class introduces fluid dynamics to first year graduate students. The aim is to help students acquire an understanding of some of the basic concepts of fluid dynamics that will be needed as a foundation for advanced courses in atmospheric science, physical oceanography, ocean engineering, etc. The emphasis will be on fluid fundamentals, but with an atmosphere/ocean twist.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. File decompression software, such as Winzip® or StuffIt®, is required to open the .zip files found on this course site.

Subjects

meteorology | meteorology | climate | climate | oceanography | oceanography | Eulerian and Lagrangian kinematics | Eulerian and Lagrangian kinematics | mass | mass | momentum | momentum | energy | energy | Vorticity | Vorticity | divergence Scaling | divergence Scaling | geostrophic approximation | geostrophic approximation | Ekman layers | Ekman layers | Vortex motion | Vortex motion | fluid dynamics | fluid dynamics | atmospheric science | atmospheric science | physical oceanography | physical oceanography | ocean engineering | ocean engineering | oceans | oceans | fluid flow | fluid flow | conservation equations | conservation equations | vortex flows | vortex flows | circulation | circulation | Earth | Earth | rotation | rotation | GFD kinematics | GFD kinematics | waves | waves | Eulerian kinematics | Eulerian kinematics | Lagrangian kinematics | Lagrangian kinematics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.753 Geodynamics Seminar (MIT) 12.753 Geodynamics Seminar (MIT)

Description

In this year's Geodynamics Seminar, we will explore the depth and breadth of scientific research related to Earth's present and past ice-sheets, glaciers and sea-ice, as well as extraterrestrial planetary ice. Invited speakers have been chosen from experts in the current frontiers in ice-related research, including planetary ice, climate records from polar and tropical ice cores, the Snowball Earth, subglacial volcanoes, ice rheology, ice sheet modeling, ice microkinetics, glacial erosion and tectonics, subglacial life and polar remote sensing. A field trip to Iceland in Summer 2006 will allow us to view some of the island's ice caps and glacial geology, the exposed mid Atlantic Ridge and evidence of ice-volcano interactions. In this year's Geodynamics Seminar, we will explore the depth and breadth of scientific research related to Earth's present and past ice-sheets, glaciers and sea-ice, as well as extraterrestrial planetary ice. Invited speakers have been chosen from experts in the current frontiers in ice-related research, including planetary ice, climate records from polar and tropical ice cores, the Snowball Earth, subglacial volcanoes, ice rheology, ice sheet modeling, ice microkinetics, glacial erosion and tectonics, subglacial life and polar remote sensing. A field trip to Iceland in Summer 2006 will allow us to view some of the island's ice caps and glacial geology, the exposed mid Atlantic Ridge and evidence of ice-volcano interactions.

Subjects

ice-related research | ice-related research | planetary ice | planetary ice | climate records: polar and tropical ice cores | climate records: polar and tropical ice cores | Snowball Earth | Snowball Earth | subglacial volcanoes | subglacial volcanoes | ice rheology | ice rheology | ice sheet modeling | ice sheet modeling | ice microkinetics | ice microkinetics | glacial erosion and tectonics | glacial erosion and tectonics | subglacial life and polar remote sensing | subglacial life and polar remote sensing | iceland | iceland | glacial geology | glacial geology | mid-atlantic ridge | mid-atlantic ridge | present and past ice-sheets | present and past ice-sheets | glaciers | glaciers | sea-ice | sea-ice | extraterrestrial planetary ice | extraterrestrial planetary ice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.570 Seminar in Geophysics: Thermal and Chemical Evolution of the Earth (MIT) 12.570 Seminar in Geophysics: Thermal and Chemical Evolution of the Earth (MIT)

Description

The main objective of this cross-disciplinary course is to understand the historical development and the current status of ideas and models, to present and question the constraints from the different research fields, and to investigate if and how the different views on mantle flow can be reconciled with the currently available data. The main objective of this cross-disciplinary course is to understand the historical development and the current status of ideas and models, to present and question the constraints from the different research fields, and to investigate if and how the different views on mantle flow can be reconciled with the currently available data.

Subjects

structure | composition | and evolution of Earth's deep interior | structure | composition | and evolution of Earth's deep interior | Seismic imaging | Seismic imaging | geodynamical modeling | geodynamical modeling | nobel gas analyses | nobel gas analyses | mantle convection | mantle convection | geophysics | geophysics | earth science | earth science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

unidentified

Description

Subjects

Materials and Resources\Earths and Clays\Brick\Sun-dried brick: adobe | Location\North America | Uses and Functions\Religious\Cemetery | graveyard

License

 (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ Copyright belongs to Paul Oliver Vernacular Architecture Library Copyright belongs to Paul Oliver Vernacular Architecture Library

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Health and Safety in Construction – Temporary Continuity Bonding

Description

The topic is mandatory in both NVQ/apprenticeships and BTEC (Construction and the Built Environment) at all levels and forms part of a set of learning resources built in a similar style.

Subjects

ILRforSkills | Continuity Bonding | Temporary | Bonding | EAWR | System | Earth | Metal work | Construction | Worker | Plumbing | Bricklaying | Carpentry | Carpenter | Electrical | Installation | Electrician | Site | Health | Safety | Built | Environment | Demolition | Plant | Accidents | Danger | Hazards | CONSTRUCTION and PROPERTY (BUILT ENVIRONMENT) | T

License

Attribution 4.0 International Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata