Searching for FACS : 2 results found | RSS Feed for this search

7.344 Directed Evolution: Engineering Biocatalysts (MIT) 7.344 Directed Evolution: Engineering Biocatalysts (MIT)

Description

Directed evolution has been used to produce enzymes with many unique properties. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current Directed evolution has been used to produce enzymes with many unique properties. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current

Subjects

evolution | evolution | biocatalyst | biocatalyst | mutation | mutation | library | library | recombination | recombination | directed evolution | directed evolution | enzyme | enzyme | point mutation | point mutation | mutagenesis | mutagenesis | DNA | DNA | gene | gene | complementation | complementation | affinity | affinity | phage | phage | ribosome display | ribosome display | yeast surface display | yeast surface display | bacterial cell surface display | bacterial cell surface display | IVC | IVC | FACS | FACS | active site | active site

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 Directed Evolution: Engineering Biocatalysts (MIT)

Description

Directed evolution has been used to produce enzymes with many unique properties. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current

Subjects

evolution | biocatalyst | mutation | library | recombination | directed evolution | enzyme | point mutation | mutagenesis | DNA | gene | complementation | affinity | phage | ribosome display | yeast surface display | bacterial cell surface display | IVC | FACS | active site

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata