Searching for Heisenberg : 21 results found | RSS Feed for this search

8.04 Quantum Physics I (MIT) 8.04 Quantum Physics I (MIT)

Description

Includes audio/video content: AV lectures. This course covers the experimental basis of quantum physics. It introduces wave mechanics, SchrÃ¶dinger's equation in a single dimension, and SchrÃ¶dinger's equation in three dimensions.It is the first course in the undergraduate Quantum Physics sequence, followed by 8.05 Quantum Physics II and 8.06 Quantum Physics III. Includes audio/video content: AV lectures. This course covers the experimental basis of quantum physics. It introduces wave mechanics, SchrÃ¶dinger's equation in a single dimension, and SchrÃ¶dinger's equation in three dimensions.It is the first course in the undergraduate Quantum Physics sequence, followed by 8.05 Quantum Physics II and 8.06 Quantum Physics III.Subjects

quantum physics: photoelectric effect | quantum physics: photoelectric effect | Compton scattering | Compton scattering | photons | photons | Franck-Hertz experiment | Franck-Hertz experiment | the Bohr atom | the Bohr atom | electron diffraction | electron diffraction | deBroglie waves | deBroglie waves | wave-particle duality of matter and light | wave-particle duality of matter and light | wave mechanics: Schroedinger's equation | wave mechanics: Schroedinger's equation | wave functions | wave functions | wave packets | wave packets | probability amplitudes | probability amplitudes | stationary states | stationary states | the Heisenberg uncertainty principle | the Heisenberg uncertainty principle | zero-point energies | zero-point energies | transmission and reflection at a barrier | transmission and reflection at a barrier | barrier penetration | barrier penetration | potential wells | potential wells | simple harmonic oscillator | simple harmonic oscillator | Schroedinger's equation in three dimensions: central potentials | and introduction to hydrogenic systems | Schroedinger's equation in three dimensions: central potentials | and introduction to hydrogenic systemsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the role of physics and physicists during the 20th century, focusing on Einstein, Oppenheimer, and Feynman. Beyond just covering the scientific developments, institutional, cultural, and political contexts will also be examined. This course covers the role of physics and physicists during the 20th century, focusing on Einstein, Oppenheimer, and Feynman. Beyond just covering the scientific developments, institutional, cultural, and political contexts will also be examined.Subjects

STS.042 | STS.042 | 8.225 | 8.225 | general relativity | general relativity | theory of relativity | theory of relativity | einstein | einstein | history of physics | history of physics | cold war | cold war | physics in the 20th century | physics in the 20th century | electrodynamics | electrodynamics | special relativity | special relativity | Heisenberg | Heisenberg | Bohr | Bohr | world war II | world war II | big science | big science | feynman | feynmanLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-STS.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.321 Quantum Theory I (MIT) 8.321 Quantum Theory I (MIT)

Description

8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement. 8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement.Subjects

eigenstates | eigenstates | uncertainty relation | uncertainty relation | observables | observables | eigenvalues | eigenvalues | probabilities of the results of measurement | probabilities of the results of measurement | transformation theory | transformation theory | equations of motion | equations of motion | constants of motion | constants of motion | Symmetry in quantum mechanics | Symmetry in quantum mechanics | representations of symmetry groups | representations of symmetry groups | Variational and perturbation approximations | Variational and perturbation approximations | Systems of identical particles and applications | Systems of identical particles and applications | Time-dependent perturbation theory | Time-dependent perturbation theory | Scattering theory: phase shifts | Scattering theory: phase shifts | Born approximation | Born approximation | The quantum theory of radiation | The quantum theory of radiation | Second quantization and many-body theory | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | Relativistic quantum mechanics of one electron | probability | probability | measurement | measurement | motion equations | motion equations | motion constants | motion constants | symmetry groups | symmetry groups | quantum mechanics | quantum mechanics | variational approximations | variational approximations | perturbation approximations | perturbation approximations | identical particles | identical particles | time-dependent perturbation theory | time-dependent perturbation theory | scattering theory | scattering theory | phase shifts | phase shifts | quantum theory of radiation | quantum theory of radiation | second quantization | second quantization | many-body theory | many-body theory | relativistic quantum mechanics | relativistic quantum mechanics | one electron | one electron | Hilbert spaces | Hilbert spaces | time evolution | time evolution | Schrodinger picture | Schrodinger picture | Heisenberg picture | Heisenberg picture | interaction picture | interaction picture | classical mechanics | classical mechanics | path integrals | path integrals | EM fields | EM fields | electromagnetic fields | electromagnetic fields | angular momentum | angular momentum | density operators | density operators | quantum measurement | quantum measurement | quantum statistics | quantum statistics | quantum dynamics | quantum dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.322 Quantum Theory II (MIT) 8.322 Quantum Theory II (MIT)

Description

8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation. 8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation.Subjects

uncertainty relation | uncertainty relation | observables | observables | eigenstates | eigenstates | eigenvalues | eigenvalues | probabilities of the results of measurement | probabilities of the results of measurement | transformation theory | transformation theory | equations of motion | equations of motion | constants of motion | constants of motion | Symmetry in quantum mechanics | Symmetry in quantum mechanics | representations of symmetry groups | representations of symmetry groups | Variational and perturbation approximations | Variational and perturbation approximations | Systems of identical particles and applications | Systems of identical particles and applications | Time-dependent perturbation theory | Time-dependent perturbation theory | Scattering theory: phase shifts | Scattering theory: phase shifts | Born approximation | Born approximation | The quantum theory of radiation | The quantum theory of radiation | Second quantization and many-body theory | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | Relativistic quantum mechanics of one electron | probability | probability | measurement | measurement | motion equations | motion equations | motion constants | motion constants | symmetry groups | symmetry groups | quantum mechanics | quantum mechanics | variational approximations | variational approximations | perturbation approximations | perturbation approximations | identical particles | identical particles | time-dependent perturbation theory | time-dependent perturbation theory | scattering theory | scattering theory | phase shifts | phase shifts | quantum theory of radiation | quantum theory of radiation | second quantization | second quantization | many-body theory | many-body theory | relativistic quantum mechanics | relativistic quantum mechanics | one electron | one electron | quantization | quantization | EM radiation field | EM radiation field | electromagnetic radiation field | electromagnetic radiation field | adiabatic theorem | adiabatic theorem | Berry?s phase | Berry?s phase | many-particle systems | many-particle systems | Dirac equation | Dirac equation | Hilbert spaces | Hilbert spaces | time evolution | time evolution | Schrodinger picture | Schrodinger picture | Heisenberg picture | Heisenberg picture | interaction picture | interaction picture | classical mechanics | classical mechanics | path integrals | path integrals | EM fields | EM fields | electromagnetic fields | electromagnetic fields | angular momentum | angular momentum | density operators | density operators | quantum measurement | quantum measurement | quantum statistics | quantum statistics | quantum dynamics | quantum dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This class will study some of the changing ideas within modern physics, ranging from relativity theory and quantum mechanics to solid-state physics, nuclear and elementary particles, and cosmology. These ideas will be situated within shifting institutional, cultural, and political contexts. The overall aim is to understand the changing roles of physics and of physicists over the course of the twentieth century. This class will study some of the changing ideas within modern physics, ranging from relativity theory and quantum mechanics to solid-state physics, nuclear and elementary particles, and cosmology. These ideas will be situated within shifting institutional, cultural, and political contexts. The overall aim is to understand the changing roles of physics and of physicists over the course of the twentieth century.Subjects

relativity theory | relativity theory | quantum mechanics | quantum mechanics | solid-state physics | solid-state physics | elementary particles | elementary particles | quarks | quarks | cosmology | cosmology | nuclear weapons | nuclear weapons | Maxwell | Maxwell | Mach | Mach | Bohr | Bohr | Heisenberg | Heisenberg | McCarthyism | McCarthyism | Poincar? | Poincar? | Schr?dinger | Schr?dinger | nuclear particles | nuclear particles | physics | physics | 20th century | 20th century | twentieth century | twentieth century | physicists | physicists | institutional | political | cultural context | institutional | political | cultural context | STS.042 | STS.042 | 8.225 | 8.225License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.04 Quantum Physics I (MIT) 8.04 Quantum Physics I (MIT)

Description

Experimental basis of Quantum Physics: photoelectric effect, Compton scattering, photons, Franck-Hertz experiment, the Bohr atom, electron diffraction, De Broglie waves, and wave-particle duality of matter and light. Introduction to wave mechanics: Schroedinger's equation, wave functions, wave packets, probability amplitudes, stationary states, the Heisenberg uncertainty principle, and zero-point energies. Solutions to Schroedinger's equation in one dimension: transmission and reflection at a barrier, barrier penetration, potential wells, the simple harmonic oscillator. Schroedinger's equation in three dimensions: central potentials, and introduction to hydrogenic systems. Experimental basis of Quantum Physics: photoelectric effect, Compton scattering, photons, Franck-Hertz experiment, the Bohr atom, electron diffraction, De Broglie waves, and wave-particle duality of matter and light. Introduction to wave mechanics: Schroedinger's equation, wave functions, wave packets, probability amplitudes, stationary states, the Heisenberg uncertainty principle, and zero-point energies. Solutions to Schroedinger's equation in one dimension: transmission and reflection at a barrier, barrier penetration, potential wells, the simple harmonic oscillator. Schroedinger's equation in three dimensions: central potentials, and introduction to hydrogenic systems.Subjects

quantum physics: photoelectric effect | quantum physics: photoelectric effect | Compton scattering | Compton scattering | photons | photons | Franck-Hertz experiment | Franck-Hertz experiment | the Bohr atom | the Bohr atom | electron diffraction | electron diffraction | deBroglie waves | deBroglie waves | wave-particle duality of matter and light | wave-particle duality of matter and light | wave mechanics: Schroedinger's equation | wave mechanics: Schroedinger's equation | wave functions | wave functions | wave packets | wave packets | probability amplitudes | probability amplitudes | stationary states | stationary states | the Heisenberg uncertainty principle | the Heisenberg uncertainty principle | zero-point energies | zero-point energies | transmission and reflection at a barrier | transmission and reflection at a barrier | barrier penetration | barrier penetration | potential wells | potential wells | simple harmonic oscillator | simple harmonic oscillator | Schroedinger's equation in three dimensions: central potentials | Schroedinger's equation in three dimensions: central potentials | introduction to hydrogenic systems | introduction to hydrogenic systems | De Broglie waves | De Broglie wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.04 Quantum Physics I (MIT) 8.04 Quantum Physics I (MIT)

Description

This course covers the experimental basis of quantum physics, introduces wave mechanics, SchrÃ¶dinger's equation in a single dimension, and SchrÃ¶dinger's equation in three dimensions. This course covers the experimental basis of quantum physics, introduces wave mechanics, SchrÃ¶dinger's equation in a single dimension, and SchrÃ¶dinger's equation in three dimensions.Subjects

quantum physics: photoelectric effect | quantum physics: photoelectric effect | Compton scattering | Compton scattering | photons | photons | Franck-Hertz experiment | Franck-Hertz experiment | the Bohr atom | the Bohr atom | electron diffraction | electron diffraction | deBroglie waves | deBroglie waves | wave-particle duality of matter and light | wave-particle duality of matter and light | wave mechanics: Schroedinger's equation | wave mechanics: Schroedinger's equation | wave functions | wave functions | wave packets | wave packets | probability amplitudes | probability amplitudes | stationary states | stationary states | the Heisenberg uncertainty principle | the Heisenberg uncertainty principle | zero-point energies | zero-point energies | transmission and reflection at a barrier | transmission and reflection at a barrier | barrier penetration | barrier penetration | potential wells | potential wells | simple harmonic oscillator | simple harmonic oscillator | Schroedinger's equation in three dimensions: central potentials | Schroedinger's equation in three dimensions: central potentials | and introduction to hydrogenic systems. | and introduction to hydrogenic systems.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This class explores the changing roles of physics and physicists during the 20th century. Topics range from relativity theory and quantum mechanics to high-energy physics and cosmology. The course also examines the development of modern physics within shifting institutional, cultural, and political contexts, such as physics in Imperial Britain, Nazi Germany, U.S. efforts during World War II, and physicists' roles during the Cold War. This class explores the changing roles of physics and physicists during the 20th century. Topics range from relativity theory and quantum mechanics to high-energy physics and cosmology. The course also examines the development of modern physics within shifting institutional, cultural, and political contexts, such as physics in Imperial Britain, Nazi Germany, U.S. efforts during World War II, and physicists' roles during the Cold War.Subjects

relativity theory | relativity theory | quantum mechanics | quantum mechanics | solid-state physics | solid-state physics | elementary particles | elementary particles | quarks | quarks | cosmology | cosmology | nuclear weapons | nuclear weapons | Maxwell | Maxwell | Mach | Mach | Poincar? | Poincar? | Bohr | Bohr | Heisenberg | Heisenberg | Schr?dinger | Schr?dinger | McCarthyism | McCarthyism | Einstein | Einstein | Planck | Planck | Feynman | Feynman | scientific frontiers | scientific frontiersLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Experimental basis of Quantum Physics: photoelectric effect, Compton scattering, photons, Franck-Hertz experiment, the Bohr atom, electron diffraction, De Broglie waves, and wave-particle duality of matter and light. Introduction to wave mechanics: Schroedinger's equation, wave functions, wave packets, probability amplitudes, stationary states, the Heisenberg uncertainty principle, and zero-point energies. Solutions to Schroedinger's equation in one dimension: transmission and reflection at a barrier, barrier penetration, potential wells, the simple harmonic oscillator. Schroedinger's equation in three dimensions: central potentials, and introduction to hydrogenic systems.Subjects

quantum physics: photoelectric effect | Compton scattering | photons | Franck-Hertz experiment | the Bohr atom | electron diffraction | deBroglie waves | wave-particle duality of matter and light | wave mechanics: Schroedinger's equation | wave functions | wave packets | probability amplitudes | stationary states | the Heisenberg uncertainty principle | zero-point energies | transmission and reflection at a barrier | barrier penetration | potential wells | simple harmonic oscillator | Schroedinger's equation in three dimensions: central potentials | introduction to hydrogenic systems | De Broglie wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the experimental basis of quantum physics, introduces wave mechanics, SchrÃ¶dinger's equation in a single dimension, and SchrÃ¶dinger's equation in three dimensions.Subjects

quantum physics: photoelectric effect | Compton scattering | photons | Franck-Hertz experiment | the Bohr atom | electron diffraction | deBroglie waves | wave-particle duality of matter and light | wave mechanics: Schroedinger's equation | wave functions | wave packets | probability amplitudes | stationary states | the Heisenberg uncertainty principle | zero-point energies | transmission and reflection at a barrier | barrier penetration | potential wells | simple harmonic oscillator | Schroedinger's equation in three dimensions: central potentials | and introduction to hydrogenic systems.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataSTS.042J Einstein, Oppenheimer, Feynman: Physics in the 20th Century (MIT)

Description

This course covers the role of physics and physicists during the 20th century, focusing on Einstein, Oppenheimer, and Feynman. Beyond just covering the scientific developments, institutional, cultural, and political contexts will also be examined.Subjects

STS.042 | 8.225 | general relativity | theory of relativity | einstein | history of physics | cold war | physics in the 20th century | electrodynamics | special relativity | Heisenberg | Bohr | world war II | big science | feynmanLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement.Subjects

eigenstates | uncertainty relation | observables | eigenvalues | probabilities of the results of measurement | transformation theory | equations of motion | constants of motion | Symmetry in quantum mechanics | representations of symmetry groups | Variational and perturbation approximations | Systems of identical particles and applications | Time-dependent perturbation theory | Scattering theory: phase shifts | Born approximation | The quantum theory of radiation | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | probability | measurement | motion equations | motion constants | symmetry groups | quantum mechanics | variational approximations | perturbation approximations | identical particles | time-dependent perturbation theory | scattering theory | phase shifts | quantum theory of radiation | second quantization | many-body theory | relativistic quantum mechanics | one electron | Hilbert spaces | time evolution | Schrodinger picture | Heisenberg picture | interaction picture | classical mechanics | path integrals | EM fields | electromagnetic fields | angular momentum | density operators | quantum measurement | quantum statistics | quantum dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation.Subjects

uncertainty relation | observables | eigenstates | eigenvalues | probabilities of the results of measurement | transformation theory | equations of motion | constants of motion | Symmetry in quantum mechanics | representations of symmetry groups | Variational and perturbation approximations | Systems of identical particles and applications | Time-dependent perturbation theory | Scattering theory: phase shifts | Born approximation | The quantum theory of radiation | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | probability | measurement | motion equations | motion constants | symmetry groups | quantum mechanics | variational approximations | perturbation approximations | identical particles | time-dependent perturbation theory | scattering theory | phase shifts | quantum theory of radiation | second quantization | many-body theory | relativistic quantum mechanics | one electron | quantization | EM radiation field | electromagnetic radiation field | adiabatic theorem | Berry?s phase | many-particle systems | Dirac equation | Hilbert spaces | time evolution | Schrodinger picture | Heisenberg picture | interaction picture | classical mechanics | path integrals | EM fields | electromagnetic fields | angular momentum | density operators | quantum measurement | quantum statistics | quantum dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataSTS.042J Einstein, Oppenheimer, Feynman: Physics in the 20th Century (MIT)

Description

This class explores the changing roles of physics and physicists during the 20th century. Topics range from relativity theory and quantum mechanics to high-energy physics and cosmology. The course also examines the development of modern physics within shifting institutional, cultural, and political contexts, such as physics in Imperial Britain, Nazi Germany, U.S. efforts during World War II, and physicists' roles during the Cold War.Subjects

relativity theory | quantum mechanics | solid-state physics | elementary particles | quarks | cosmology | nuclear weapons | Maxwell | Mach | Poincar? | Bohr | Heisenberg | Schr?dinger | McCarthyism | Einstein | Planck | Feynman | scientific frontiersLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This is the first course in the undergraduate Quantum Physics sequence. It introduces the basic features of quantum mechanics. It covers the experimental basis of quantum physics, introduces wave mechanics, Schrödinger's equation in a single dimension, and Schrödinger's equation in three dimensions.This presentation of 8.04 by Barton Zwiebach (2016) differs somewhat and complements nicely the presentation of Allan Adams (2013). Adams covers a larger set of ideas; Zwiebach tends to go deeper into a smaller set of ideas, offering a systematic and detailed treatment. Adams begins with the subtleties of superpostion, while Zwiebach discusses the surprises of interaction-free measurements. While both courses overlap over a sizable amount of standard material, Adams discussed applications tSubjects

quantum physics: photoelectric effect | Compton scattering | photons | Franck-Hertz experiment | the Bohr atom | electron diffraction | deBroglie waves | wave-particle duality of matter and light | wave mechanics: Schroedinger's equation | wave functions | wave packets | probability amplitudes | stationary states | the Heisenberg uncertainty principle | zero-point energies | transmission and reflection at a barrier | barrier penetration | potential wells | simple harmonic oscillator | Schroedinger's equation in three dimensions: central potentials | and introduction to hydrogenic systems.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the experimental basis of quantum physics, introduces wave mechanics, Schrödinger's equation in a single dimension, and Schrödinger's equation in three dimensions.Subjects

quantum physics: photoelectric effect | Compton scattering | photons | Franck-Hertz experiment | the Bohr atom | electron diffraction | deBroglie waves | wave-particle duality of matter and light | wave mechanics: Schroedinger's equation | wave functions | wave packets | probability amplitudes | stationary states | the Heisenberg uncertainty principle | zero-point energies | transmission and reflection at a barrier | barrier penetration | potential wells | simple harmonic oscillator | Schroedinger's equation in three dimensions: central potentials | and introduction to hydrogenic systems.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the experimental basis of quantum physics. It introduces wave mechanics, Schrödinger's equation in a single dimension, and Schrödinger's equation in three dimensions.It is the first course in the undergraduate Quantum Physics sequence, followed by 8.05 Quantum Physics II and 8.06 Quantum Physics III.Subjects

quantum physics: photoelectric effect | Compton scattering | photons | Franck-Hertz experiment | the Bohr atom | electron diffraction | deBroglie waves | wave-particle duality of matter and light | wave mechanics: Schroedinger's equation | wave functions | wave packets | probability amplitudes | stationary states | the Heisenberg uncertainty principle | zero-point energies | transmission and reflection at a barrier | barrier penetration | potential wells | simple harmonic oscillator | Schroedinger's equation in three dimensions: central potentials | and introduction to hydrogenic systemsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the experimental basis of quantum physics, introduces wave mechanics, SchrÃ¶dinger's equation in a single dimension, and SchrÃ¶dinger's equation in three dimensions.Subjects

quantum physics: photoelectric effect | Compton scattering | photons | Franck-Hertz experiment | the Bohr atom | electron diffraction | deBroglie waves | wave-particle duality of matter and light | wave mechanics: Schroedinger's equation | wave functions | wave packets | probability amplitudes | stationary states | the Heisenberg uncertainty principle | zero-point energies | transmission and reflection at a barrier | barrier penetration | potential wells | simple harmonic oscillator | Schroedinger's equation in three dimensions: central potentials | and introduction to hydrogenic systems.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

8.321 is the first semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: Hilbert spaces, observables, uncertainty relations, eigenvalue problems and methods for solution thereof, time-evolution in the Schrodinger, Heisenberg, and interaction pictures, connections between classical and quantum mechanics, path integrals, quantum mechanics in EM fields, angular momentum, time-independent perturbation theory, density operators, and quantum measurement.Subjects

eigenstates | uncertainty relation | observables | eigenvalues | probabilities of the results of measurement | transformation theory | equations of motion | constants of motion | Symmetry in quantum mechanics | representations of symmetry groups | Variational and perturbation approximations | Systems of identical particles and applications | Time-dependent perturbation theory | Scattering theory: phase shifts | Born approximation | The quantum theory of radiation | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | probability | measurement | motion equations | motion constants | symmetry groups | quantum mechanics | variational approximations | perturbation approximations | identical particles | time-dependent perturbation theory | scattering theory | phase shifts | quantum theory of radiation | second quantization | many-body theory | relativistic quantum mechanics | one electron | Hilbert spaces | time evolution | Schrodinger picture | Heisenberg picture | interaction picture | classical mechanics | path integrals | EM fields | electromagnetic fields | angular momentum | density operators | quantum measurement | quantum statistics | quantum dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

8.322 is the second semester of a two-semester subject on quantum theory, stressing principles. Topics covered include: time-dependent perturbation theory and applications to radiation, quantization of EM radiation field, adiabatic theorem and Berry's phase, symmetries in QM, many-particle systems, scattering theory, relativistic quantum mechanics, and Dirac equation.Subjects

uncertainty relation | observables | eigenstates | eigenvalues | probabilities of the results of measurement | transformation theory | equations of motion | constants of motion | Symmetry in quantum mechanics | representations of symmetry groups | Variational and perturbation approximations | Systems of identical particles and applications | Time-dependent perturbation theory | Scattering theory: phase shifts | Born approximation | The quantum theory of radiation | Second quantization and many-body theory | Relativistic quantum mechanics of one electron | probability | measurement | motion equations | motion constants | symmetry groups | quantum mechanics | variational approximations | perturbation approximations | identical particles | time-dependent perturbation theory | scattering theory | phase shifts | quantum theory of radiation | second quantization | many-body theory | relativistic quantum mechanics | one electron | quantization | EM radiation field | electromagnetic radiation field | adiabatic theorem | Berry?s phase | many-particle systems | Dirac equation | Hilbert spaces | time evolution | Schrodinger picture | Heisenberg picture | interaction picture | classical mechanics | path integrals | EM fields | electromagnetic fields | angular momentum | density operators | quantum measurement | quantum statistics | quantum dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataSTS.042J Einstein, Oppenheimer, Feynman: Physics in the 20th Century (MIT)

Description

This class will study some of the changing ideas within modern physics, ranging from relativity theory and quantum mechanics to solid-state physics, nuclear and elementary particles, and cosmology. These ideas will be situated within shifting institutional, cultural, and political contexts. The overall aim is to understand the changing roles of physics and of physicists over the course of the twentieth century.Subjects

relativity theory | quantum mechanics | solid-state physics | elementary particles | quarks | cosmology | nuclear weapons | Maxwell | Mach | Bohr | Heisenberg | McCarthyism | Poincar? | Schr?dinger | nuclear particles | physics | 20th century | twentieth century | physicists | institutional | political | cultural context | STS.042 | 8.225License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata