Searching for LQG : 4 results found | RSS Feed for this search

16.323 Principles of Optimal Control (MIT) 16.323 Principles of Optimal Control (MIT)

Description

This course studies basic optimization and the principles of optimal control. It considers deterministic and stochastic problems for both discrete and continuous systems. The course covers solution methods including numerical search algorithms, model predictive control, dynamic programming, variational calculus, and approaches based on Pontryagin's maximum principle, and it includes many examples and applications of the theory. This course studies basic optimization and the principles of optimal control. It considers deterministic and stochastic problems for both discrete and continuous systems. The course covers solution methods including numerical search algorithms, model predictive control, dynamic programming, variational calculus, and approaches based on Pontryagin's maximum principle, and it includes many examples and applications of the theory.Subjects

nonlinear optimization | nonlinear optimization | dynamic programming | dynamic programming | HJB Equation | HJB Equation | calculus of variations | calculus of variations | constrained optimal control | constrained optimal control | singular arcs | singular arcs | stochastic optimal control | stochastic optimal control | LQG robustness | LQG robustness | feedback control systems | feedback control systems | model predictive control | model predictive control | line search methods | line search methods | Lagrange multipliers | Lagrange multipliers | discrete LQR | discrete LQRLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.323 Principles of Optimal Control (MIT) 16.323 Principles of Optimal Control (MIT)

Description

This course studies the principles of deterministic optimal control. It uses variational calculus and Pontryagin's maximum principle. It focuses on applications of the theory, including optimal feedback control, time-optimal control, and others. Dynamic programming and numerical search algorithms are introduced briefly. This course studies the principles of deterministic optimal control. It uses variational calculus and Pontryagin's maximum principle. It focuses on applications of the theory, including optimal feedback control, time-optimal control, and others. Dynamic programming and numerical search algorithms are introduced briefly.Subjects

nonlinear optimization | nonlinear optimization | linear quadratic regulators | linear quadratic regulators | MATLAB implementation | MATLAB implementation | dynamic programming | dynamic programming | calculus of variations | calculus of variations | LQR | LQR | LQG | LQG | stochastic optimization | stochastic optimization | on-line optimization and control | on-line optimization and control | constrained optimization | constrained optimization | signals | signals | system norms | system norms | Model Predictive Behavior | Model Predictive Behavior | quadratic programming | quadratic programming | mixed-integer linear programming | mixed-integer linear programming | linear programming | linear programmingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.323 Principles of Optimal Control (MIT)

Description

This course studies the principles of deterministic optimal control. It uses variational calculus and Pontryagin's maximum principle. It focuses on applications of the theory, including optimal feedback control, time-optimal control, and others. Dynamic programming and numerical search algorithms are introduced briefly.Subjects

nonlinear optimization | linear quadratic regulators | MATLAB implementation | dynamic programming | calculus of variations | LQR | LQG | stochastic optimization | on-line optimization and control | constrained optimization | signals | system norms | Model Predictive Behavior | quadratic programming | mixed-integer linear programming | linear programmingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.323 Principles of Optimal Control (MIT)

Description

This course studies basic optimization and the principles of optimal control. It considers deterministic and stochastic problems for both discrete and continuous systems. The course covers solution methods including numerical search algorithms, model predictive control, dynamic programming, variational calculus, and approaches based on Pontryagin's maximum principle, and it includes many examples and applications of the theory.Subjects

nonlinear optimization | dynamic programming | HJB Equation | calculus of variations | constrained optimal control | singular arcs | stochastic optimal control | LQG robustness | feedback control systems | model predictive control | line search methods | Lagrange multipliers | discrete LQRLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata