Searching for Markov : 66 results found | RSS Feed for this search

6.262 Discrete Stochastic Processes (MIT) 6.262 Discrete Stochastic Processes (MIT)

Description

Discrete stochastic processes are essentially probabilistic systems that evolve in time via random changes occurring at discrete fixed or random intervals. This course aims to help students acquire both the mathematical principles and the intuition necessary to create, analyze, and understand insightful models for a broad range of these processes. The range of areas for which discrete stochastic-process models are useful is constantly expanding, and includes many applications in engineering, physics, biology, operations research and finance. Discrete stochastic processes are essentially probabilistic systems that evolve in time via random changes occurring at discrete fixed or random intervals. This course aims to help students acquire both the mathematical principles and the intuition necessary to create, analyze, and understand insightful models for a broad range of these processes. The range of areas for which discrete stochastic-process models are useful is constantly expanding, and includes many applications in engineering, physics, biology, operations research and finance.Subjects

probability | probability | Poisson processes | Poisson processes | finite-state Markov chains | finite-state Markov chains | renewal processes | renewal processes | countable-state Markov chains | countable-state Markov chains | Markov processes | Markov processes | countable state spaces | countable state spaces | random walks | random walks | large deviations | large deviations | martingales | martingalesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.262 Discrete Stochastic Processes (MIT) 6.262 Discrete Stochastic Processes (MIT)

Description

Includes audio/video content: AV lectures. Discrete stochastic processes are essentially probabilistic systems that evolve in time via random changes occurring at discrete fixed or random intervals. This course aims to help students acquire both the mathematical principles and the intuition necessary to create, analyze, and understand insightful models for a broad range of these processes. The range of areas for which discrete stochastic-process models are useful is constantly expanding, and includes many applications in engineering, physics, biology, operations research and finance. Includes audio/video content: AV lectures. Discrete stochastic processes are essentially probabilistic systems that evolve in time via random changes occurring at discrete fixed or random intervals. This course aims to help students acquire both the mathematical principles and the intuition necessary to create, analyze, and understand insightful models for a broad range of these processes. The range of areas for which discrete stochastic-process models are useful is constantly expanding, and includes many applications in engineering, physics, biology, operations research and finance.Subjects

probability | probability | Poisson processes | Poisson processes | finite-state Markov chains | finite-state Markov chains | renewal processes | renewal processes | countable-state Markov chains | countable-state Markov chains | Markov processes | Markov processes | countable state spaces | countable state spaces | random walks | random walks | large deviations | large deviations | martingales | martingalesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the basic models and solution techniques for problems of sequential decision making under uncertainty (stochastic control). Approximation methods for problems involving large state spaces are also presented and discussed. This course covers the basic models and solution techniques for problems of sequential decision making under uncertainty (stochastic control). Approximation methods for problems involving large state spaces are also presented and discussed.Subjects

dynamic programming | dynamic programming | | stochastic control | | stochastic control | | mathematics | optimization | | | mathematics | optimization | | algorithms | | algorithms | | probability | | probability | | Markov chains | | Markov chains | | optimal control | optimal control | stochastic control | stochastic control | mathematics | mathematics | optimization | optimization | algorithms | algorithms | probability | probability | Markov chains | Markov chainsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace informationSubjects

autonomy | autonomy | decision | decision | decision-making | decision-making | reasoning | reasoning | optimization | optimization | autonomous | autonomous | autonomous systems | autonomous systems | decision support | decision support | algorithms | algorithms | artificial intelligence | artificial intelligence | a.i. | a.i. | operations | operations | operations research | operations research | logic | logic | deduction | deduction | heuristic search | heuristic search | constraint-based search | constraint-based search | model-based reasoning | model-based reasoning | planning | planning | execution | execution | uncertainty | uncertainty | machine learning | machine learning | linear programming | linear programming | dynamic programming | dynamic programming | integer programming | integer programming | network optimization | network optimization | decision analysis | decision analysis | decision theoretic planning | decision theoretic planning | Markov decision process | Markov decision process | scheme | scheme | propositional logic | propositional logic | constraints | constraints | Markov processes | Markov processes | computational performance | computational performance | satisfaction | satisfaction | learning algorithms | learning algorithms | system state | system state | state | state | search treees | search treees | plan spaces | plan spaces | model theory | model theory | decision trees | decision trees | function approximators | function approximators | optimization algorithms | optimization algorithms | limitations | limitations | tradeoffs | tradeoffs | search and reasoning | search and reasoning | game tree search | game tree search | local stochastic search | local stochastic search | stochastic | stochastic | genetic algorithms | genetic algorithms | constraint satisfaction | constraint satisfaction | propositional inference | propositional inference | rule-based systems | rule-based systems | rule-based | rule-based | model-based diagnosis | model-based diagnosis | neural nets | neural nets | reinforcement learning | reinforcement learning | web-based | web-based | search trees | search treesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.867 Machine Learning (MIT) 6.867 Machine Learning (MIT)

Description

6.867 is an introductory course on machine learning which provides an overview of many techniques and algorithms in machine learning, beginning with topics such as simple perceptrons and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course gives the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how and why they work. The underlying theme in the course is statistical inference as this provides the foundation for most of the methods covered.  6.867 is an introductory course on machine learning which provides an overview of many techniques and algorithms in machine learning, beginning with topics such as simple perceptrons and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course gives the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how and why they work. The underlying theme in the course is statistical inference as this provides the foundation for most of the methods covered. Subjects

machine learning | machine learning | perceptrons | perceptrons | boosting | boosting | support vector machines | support vector machines | Markov | Markov | hidden Markov models | hidden Markov models | HMM | HMM | Bayesian networks | Bayesian networks | statistical inference | statistical inference | regression | regression | clustering | clustering | bias | bias | variance | variance | regularization | regularization | Generalized Linear Models | Generalized Linear Models | neural networks | neural networks | Support Vector Machine | Support Vector Machine | SVM | SVM | mixture models | mixture models | kernel density estimation | kernel density estimation | gradient descent | gradient descent | quadratic programming | quadratic programming | EM algorithm | EM algorithm | orward-backward algorithm | orward-backward algorithm | junction tree algorithm | junction tree algorithm | Gibbs sampling | Gibbs samplingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace informationSubjects

autonomy | autonomy | decision | decision | decision-making | decision-making | reasoning | reasoning | optimization | optimization | autonomous | autonomous | autonomous systems | autonomous systems | decision support | decision support | algorithms | algorithms | artificial intelligence | artificial intelligence | a.i. | a.i. | operations | operations | operations research | operations research | logic | logic | deduction | deduction | heuristic search | heuristic search | constraint-based search | constraint-based search | model-based reasoning | model-based reasoning | planning | planning | execution | execution | uncertainty | uncertainty | machine learning | machine learning | linear programming | linear programming | dynamic programming | dynamic programming | integer programming | integer programming | network optimization | network optimization | decision analysis | decision analysis | decision theoretic planning | decision theoretic planning | Markov decision process | Markov decision process | scheme | scheme | propositional logic | propositional logic | constraints | constraints | Markov processes | Markov processes | computational performance | computational performance | satisfaction | satisfaction | learning algorithms | learning algorithms | system state | system state | state | state | search treees | search treees | plan spaces | plan spaces | model theory | model theory | decision trees | decision trees | function approximators | function approximators | optimization algorithms | optimization algorithms | limitations | limitations | tradeoffs | tradeoffs | search and reasoning | search and reasoning | game tree search | game tree search | local stochastic search | local stochastic search | stochastic | stochastic | genetic algorithms | genetic algorithms | constraint satisfaction | constraint satisfaction | propositional inference | propositional inference | rule-based systems | rule-based systems | rule-based | rule-based | model-based diagnosis | model-based diagnosis | neural nets | neural nets | reinforcement learning | reinforcement learning | web-based | web-based | search trees | search treesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the basic models and solution techniques for problems of sequential decision making under uncertainty (stochastic control). Approximation methods for problems involving large state spaces are also presented and discussed. This course covers the basic models and solution techniques for problems of sequential decision making under uncertainty (stochastic control). Approximation methods for problems involving large state spaces are also presented and discussed.Subjects

dynamic programming | dynamic programming | | stochastic control | | stochastic control | | mathematics | optimization | | | mathematics | optimization | | algorithms | | algorithms | | probability | | probability | | Markov chains | | Markov chains | | optimal control | optimal control | stochastic control | stochastic control | mathematics | mathematics | optimization | optimization | algorithms | algorithms | probability | probability | Markov chains | Markov chainsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace informationSubjects

autonomy | autonomy | decision | decision | decision-making | decision-making | reasoning | reasoning | optimization | optimization | autonomous | autonomous | autonomous systems | autonomous systems | decision support | decision support | algorithms | algorithms | artificial intelligence | artificial intelligence | a.i. | a.i. | operations | operations | operations research | operations research | logic | logic | deduction | deduction | heuristic search | heuristic search | constraint-based search | constraint-based search | model-based reasoning | model-based reasoning | planning | planning | execution | execution | uncertainty | uncertainty | machine learning | machine learning | linear programming | linear programming | dynamic programming | dynamic programming | integer programming | integer programming | network optimization | network optimization | decision analysis | decision analysis | decision theoretic planning | decision theoretic planning | Markov decision process | Markov decision process | scheme | scheme | propositional logic | propositional logic | constraints | constraints | Markov processes | Markov processes | computational performance | computational performance | satisfaction | satisfaction | learning algorithms | learning algorithms | system state | system state | state | state | search treees | search treees | plan spaces | plan spaces | model theory | model theory | decision trees | decision trees | function approximators | function approximators | optimization algorithms | optimization algorithms | limitations | limitations | tradeoffs | tradeoffs | search and reasoning | search and reasoning | game tree search | game tree search | local stochastic search | local stochastic search | stochastic | stochastic | genetic algorithms | genetic algorithms | constraint satisfaction | constraint satisfaction | propositional inference | propositional inference | rule-based systems | rule-based systems | rule-based | rule-based | model-based diagnosis | model-based diagnosis | neural nets | neural nets | reinforcement learning | reinforcement learning | web-based | web-based | search trees | search treesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.867 Machine Learning (MIT) 6.867 Machine Learning (MIT)

Description

6.867 is an introductory course on machine learning which provides an overview of many techniques and algorithms in machine learning, beginning with topics such as simple perceptrons and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course gives the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how and why they work. The underlying theme in the course is statistical inference as this provides the foundation for most of the methods covered.  6.867 is an introductory course on machine learning which provides an overview of many techniques and algorithms in machine learning, beginning with topics such as simple perceptrons and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course gives the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how and why they work. The underlying theme in the course is statistical inference as this provides the foundation for most of the methods covered. Subjects

machine learning | machine learning | perceptrons | perceptrons | boosting | boosting | support vector machines | support vector machines | Markov | Markov | hidden Markov models | hidden Markov models | HMM | HMM | Bayesian networks | Bayesian networks | statistical inference | statistical inference | regression | regression | clustering | clustering | bias | bias | variance | variance | regularization | regularization | Generalized Linear Models | Generalized Linear Models | neural networks | neural networks | Support Vector Machine | Support Vector Machine | SVM | SVM | mixture models | mixture models | kernel density estimation | kernel density estimation | gradient descent | gradient descent | quadratic programming | quadratic programming | EM algorithm | EM algorithm | orward-backward algorithm | orward-backward algorithm | junction tree algorithm | junction tree algorithm | Gibbs sampling | Gibbs samplingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace informationSubjects

autonomy | autonomy | decision | decision | decision-making | decision-making | reasoning | reasoning | optimization | optimization | autonomous | autonomous | autonomous systems | autonomous systems | decision support | decision support | algorithms | algorithms | artificial intelligence | artificial intelligence | a.i. | a.i. | operations | operations | operations research | operations research | logic | logic | deduction | deduction | heuristic search | heuristic search | constraint-based search | constraint-based search | model-based reasoning | model-based reasoning | planning | planning | execution | execution | uncertainty | uncertainty | machine learning | machine learning | linear programming | linear programming | dynamic programming | dynamic programming | integer programming | integer programming | network optimization | network optimization | decision analysis | decision analysis | decision theoretic planning | decision theoretic planning | Markov decision process | Markov decision process | scheme | scheme | propositional logic | propositional logic | constraints | constraints | Markov processes | Markov processes | computational performance | computational performance | satisfaction | satisfaction | learning algorithms | learning algorithms | system state | system state | state | state | search treees | search treees | plan spaces | plan spaces | model theory | model theory | decision trees | decision trees | function approximators | function approximators | optimization algorithms | optimization algorithms | limitations | limitations | tradeoffs | tradeoffs | search and reasoning | search and reasoning | game tree search | game tree search | local stochastic search | local stochastic search | stochastic | stochastic | genetic algorithms | genetic algorithms | constraint satisfaction | constraint satisfaction | propositional inference | propositional inference | rule-based systems | rule-based systems | rule-based | rule-based | model-based diagnosis | model-based diagnosis | neural nets | neural nets | reinforcement learning | reinforcement learning | web-based | web-based | search trees | search treesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.852 Manufacturing Systems Analysis (MIT) 2.852 Manufacturing Systems Analysis (MIT)

Description

This course covers the following topics: models of manufacturing systems, including transfer lines and flexible manufacturing systems; calculation of performance measures, including throughput, in-process inventory, and meeting production commitments; real-time control of scheduling; effects of machine failure, set-ups, and other disruptions on system performance. This course covers the following topics: models of manufacturing systems, including transfer lines and flexible manufacturing systems; calculation of performance measures, including throughput, in-process inventory, and meeting production commitments; real-time control of scheduling; effects of machine failure, set-ups, and other disruptions on system performance.Subjects

transfer lines | transfer lines | flexible manufacturing systems | flexible manufacturing systems | performance measures | performance measures | throughput | throughput | in-process inventory | in-process inventory | real-time scheduling | real-time scheduling | machine failure | machine failure | buffer design | buffer design | optimization | optimization | probability | probability | Markov chains | Markov chains | long lines | long lines | quality/quantity | quality/quantity | loops | loops | assembly/disassembly systems | assembly/disassembly systemsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.867 Machine Learning (MIT) 6.867 Machine Learning (MIT)

Description

6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as classification and linear regression and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course will give the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how, why, and when they work. The underlying theme in the course is statistical inference as it provides the foundation for most of the methods covered. 6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as classification and linear regression and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course will give the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how, why, and when they work. The underlying theme in the course is statistical inference as it provides the foundation for most of the methods covered.Subjects

machine learning algorithms | machine learning algorithms | statistical inference | statistical inference | representation | representation | generalization | generalization | model selection | model selection | linear/additive models | linear/additive models | active learning | active learning | boosting | boosting | support vector machines | support vector machines | hidden Markov models | hidden Markov models | Bayesian networks | Bayesian networks | classification | classification | linear regression | linear regression | modern machine learning methods | modern machine learning methodsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.06 Linear Algebra (MIT) 18.06 Linear Algebra (MIT)

Description

Basic subject on matrix theory and linear algebra, emphasizing topics useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices. Applications to least-squares approximations, stability of differential equations, networks, Fourier transforms, and Markov processes. Uses MATLAB®. Compared with 18.700 [also Linear Algebra], more emphasis on matrix algorithms and many applications. MATLAB® is a trademark of The MathWorks, Inc. Basic subject on matrix theory and linear algebra, emphasizing topics useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices. Applications to least-squares approximations, stability of differential equations, networks, Fourier transforms, and Markov processes. Uses MATLAB®. Compared with 18.700 [also Linear Algebra], more emphasis on matrix algorithms and many applications. MATLAB® is a trademark of The MathWorks, Inc.Subjects

Generalized spaces | Generalized spaces | Linear algebra | Linear algebra | Algebra | Universal | Algebra | Universal | Mathematical analysis | Mathematical analysis | Calculus of operations | Calculus of operations | Line geometry | Line geometry | Topology | Topology | matrix theory | matrix theory | systems of equations | systems of equations | vector spaces | vector spaces | systems determinants | systems determinants | eigen values | eigen values | positive definite matrices | positive definite matrices | Markov processes | Markov processes | Fourier transforms | Fourier transforms | differential equations | differential equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata14.381 Statistical Method in Economics (MIT) 14.381 Statistical Method in Economics (MIT)

Description

?This course is divided into two sections, Part I and Part II. Part I provides an introduction to statistical theory and can be found by visiting 14.381 Fall 2013. Part II, found here, prepares students for the remainder of the econometrics sequence. The emphasis of the course is to understand the basic principles of statistical theory. A brief review of probability will be given; however, this material is assumed knowledge. The course also covers basic regression analysis. Topics covered include probability, random samples, asymptotic methods, point estimation, evaluation of estimators, Cramer-Rao theorem, hypothesis tests, Neyman Pearson lemma, Likelihood Ratio test, interval estimation, best linear predictor, best linear approximation, conditional expectation function, buil ?This course is divided into two sections, Part I and Part II. Part I provides an introduction to statistical theory and can be found by visiting 14.381 Fall 2013. Part II, found here, prepares students for the remainder of the econometrics sequence. The emphasis of the course is to understand the basic principles of statistical theory. A brief review of probability will be given; however, this material is assumed knowledge. The course also covers basic regression analysis. Topics covered include probability, random samples, asymptotic methods, point estimation, evaluation of estimators, Cramer-Rao theorem, hypothesis tests, Neyman Pearson lemma, Likelihood Ratio test, interval estimation, best linear predictor, best linear approximation, conditional expectation function, builSubjects

statistical theory | statistical theory | econometrics | econometrics | regression analysis | regression analysis | probability | probability | random samples | random samples | asymptotic methods | asymptotic methods | point estimation | point estimation | evaluation of estimators | evaluation of estimators | Cramer-Rao theorem | Cramer-Rao theorem | hypothesis tests | hypothesis tests | Neyman Pearson lemma | Neyman Pearson lemma | Likelihood Ratio test | Likelihood Ratio test | interval estimation | interval estimation | best linear predictor | best linear predictor | best linear approximation | best linear approximation | conditional expectation function | conditional expectation function | building functional forms | building functional forms | regression algebra | regression algebra | Gauss-Markov optimality | Gauss-Markov optimality | finite-sample inference | finite-sample inference | consistency | consistency | asymptotic normality | asymptotic normality | heteroscedasticity | heteroscedasticity | autocorrelation | autocorrelationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.445 Introduction to Stochastic Processes (MIT) 18.445 Introduction to Stochastic Processes (MIT)

Description

This course is an introduction to Markov chains, random walks, martingales, and Galton-Watsom tree. The course requires basic knowledge in probability theory and linear algebra including conditional expectation and matrix. This course is an introduction to Markov chains, random walks, martingales, and Galton-Watsom tree. The course requires basic knowledge in probability theory and linear algebra including conditional expectation and matrix.Subjects

probability | probability | Stochastic Processes | Stochastic Processes | Markov chains | Markov chains | random walks | random walks | martingales | martingales | Galton-Watsom tree | Galton-Watsom tree | linear algebra | linear algebraLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata14.382 Econometrics I (MIT) 14.382 Econometrics I (MIT)

Description

This course focuses on the specification and estimation of the linear regression model. The course departs from the standard Gauss-Markov assumptions to include heteroskedasticity, serial correlation, and errors in variables. Advanced topics include generalized least squares, instrumental variables, nonlinear regression, and limited dependent variable models. Economic applications are discussed throughout the course. This course focuses on the specification and estimation of the linear regression model. The course departs from the standard Gauss-Markov assumptions to include heteroskedasticity, serial correlation, and errors in variables. Advanced topics include generalized least squares, instrumental variables, nonlinear regression, and limited dependent variable models. Economic applications are discussed throughout the course.Subjects

Economics | Economics | econometrics | econometrics | linear regression model | linear regression model | Gauss-Markov | Gauss-Markov | heteroskedasticity | heteroskedasticity | serial correlation | serial correlation | errors | errors | variables | variables | generalized least squares | generalized least squares | instrumental variables | instrumental variables | nonlinear regression | nonlinear regression | limited dependent variable models | limited dependent variable modelsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.06 Linear Algebra (MIT) 18.06 Linear Algebra (MIT)

Description

This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices. This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and positive definite matrices.Subjects

matrix theory | matrix theory | linear algebra | linear algebra | systems of equations | systems of equations | vector spaces | vector spaces | determinants | determinants | eigenvalues | eigenvalues | similarity | similarity | positive definite matrices | positive definite matrices | least-squares approximations | least-squares approximations | stability of differential equations | stability of differential equations | networks | networks | Fourier transforms | Fourier transforms | Markov processes | Markov processesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.881 Natural Language Processing (MIT) 6.881 Natural Language Processing (MIT)

Description

This course is a graduate level introduction to natural language processing, the primary concern of which is the study of human language from a computational perspective.The class will cover models at the level of syntactic, semantic and discourse processing. The emphasis will be on corpus-based methods and algorithms, such as Hidden Markov Models and probabilistic context free grammars. We will discuss the use of these methods and models in a variety of applications including syntactic parsing, information extraction, statistical machine translation, and summarization.This subject qualifies as an Artificial Intelligence and Applications concentration subject.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .gz and .tar This course is a graduate level introduction to natural language processing, the primary concern of which is the study of human language from a computational perspective.The class will cover models at the level of syntactic, semantic and discourse processing. The emphasis will be on corpus-based methods and algorithms, such as Hidden Markov Models and probabilistic context free grammars. We will discuss the use of these methods and models in a variety of applications including syntactic parsing, information extraction, statistical machine translation, and summarization.This subject qualifies as an Artificial Intelligence and Applications concentration subject.Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .gz and .tarSubjects

syntactic models | syntactic models | semantic models | semantic models | discourse processing models | discourse processing models | corpus-based methods | corpus-based methods | algorithms | algorithms | Hidden Markov Models | Hidden Markov Models | probabilistic context free grammars | probabilistic context free grammars | syntactic parsing | syntactic parsing | information extraction | information extraction | statistical machine translation | statistical machine translation | summarization | summarizationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is offered both to undergraduates (6.041) and graduates (6.431), but the assignments differ. 6.041/6.431 introduces students to the modeling, quantification, and analysis of uncertainty. Topics covered include: formulation and solution in sample space, random variables, transform techniques, simple random processes and their probability distributions, Markov processes, limit theorems, and elements of statistical inference. This course is offered both to undergraduates (6.041) and graduates (6.431), but the assignments differ. 6.041/6.431 introduces students to the modeling, quantification, and analysis of uncertainty. Topics covered include: formulation and solution in sample space, random variables, transform techniques, simple random processes and their probability distributions, Markov processes, limit theorems, and elements of statistical inference.Subjects

probabilistic systems | probabilistic systems | probabilistic systems analysis | probabilistic systems analysis | applied probability | applied probability | uncertainty | uncertainty | uncertainty modeling | uncertainty modeling | uncertainty quantification | uncertainty quantification | analysis of uncertainty | analysis of uncertainty | uncertainty analysis | uncertainty analysis | sample space | sample space | random variables | random variables | transform techniques | transform techniques | simple random processes | simple random processes | probability distribution | probability distribution | Markov process | Markov process | limit theorem | limit theorem | statistical inference | statistical inferenceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). It presents a unified study of functions of random variables, geometrical probability, multi-server queueing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. There will be discussion focused on the difficulty of implementation, among other topics. The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). It presents a unified study of functions of random variables, geometrical probability, multi-server queueing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. There will be discussion focused on the difficulty of implementation, among other topics.Subjects

1.203 | 1.203 | 6.281 | 6.281 | 15.073 | 15.073 | 16.76 | 16.76 | ESD.216 | ESD.216 | logistics | logistics | transportation | transportation | hypercube models | hypercube models | barrier example | barrier example | operations research | operations research | spatial queues | spatial queues | queueing models | queueing models | network models | network models | TSP | TSP | heuristics | heuristics | geometrical probabilities | geometrical probabilities | Markov | Markov | quantitative techniques | quantitative techniques | transportation systems analysis | transportation systems analysis | urban service systems | urban service systems | emergency services | emergency services | random variables | random variables | multi-server queueing theory | multi-server queueing theory | spatial location theory | spatial location theory | network analysis | network analysis | graph theory | graph theory | simulation | simulation | urban OR | urban ORLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.06SC Linear Algebra (MIT) 18.06SC Linear Algebra (MIT)

Description

This course covers matrix theory and linear algebra, emphasizing topics useful in other disciplines such as physics, economics and social sciences, natural sciences, and engineering. It parallels the combination of theory and applications in Professor Strang’s textbook Introduction to Linear Algebra. This course covers matrix theory and linear algebra, emphasizing topics useful in other disciplines such as physics, economics and social sciences, natural sciences, and engineering. It parallels the combination of theory and applications in Professor Strang’s textbook Introduction to Linear Algebra.Subjects

matrix theory | matrix theory | linear algebra | linear algebra | systems of equations | systems of equations | vector spaces | vector spaces | determinants | determinants | eigenvalues | eigenvalues | similarity | similarity | positive definite matrices | positive definite matrices | least-squares approximations | least-squares approximations | stability of differential equations | stability of differential equations | networks | networks | Fourier transforms | Fourier transforms | Markov processes | Markov processesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allocwscholarcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata14.381 Statistical Method in Economics (MIT) 14.381 Statistical Method in Economics (MIT)

Description

This course is divided into two sections, Part I and Part II. Part I provides an introduction to statistical theory and can be found by visiting 14.381 Fall 2013. Part II, found here, prepares students for the remainder of the econometrics sequence. The emphasis of the course is to understand the basic principles of statistical theory. A brief review of probability will be given; however, this material is assumed knowledge. The course also covers basic regression analysis. Topics covered include probability, random samples, asymptotic methods, point estimation, evaluation of estimators, Cramer-Rao theorem, hypothesis tests, Neyman Pearson lemma, Likelihood Ratio test, interval estimation, best linear predictor, best linear approximation, conditional expectation function, buil This course is divided into two sections, Part I and Part II. Part I provides an introduction to statistical theory and can be found by visiting 14.381 Fall 2013. Part II, found here, prepares students for the remainder of the econometrics sequence. The emphasis of the course is to understand the basic principles of statistical theory. A brief review of probability will be given; however, this material is assumed knowledge. The course also covers basic regression analysis. Topics covered include probability, random samples, asymptotic methods, point estimation, evaluation of estimators, Cramer-Rao theorem, hypothesis tests, Neyman Pearson lemma, Likelihood Ratio test, interval estimation, best linear predictor, best linear approximation, conditional expectation function, builSubjects

statistical theory | statistical theory | econometrics | econometrics | regression analysis | regression analysis | probability | probability | random samples | random samples | asymptotic methods | asymptotic methods | point estimation | point estimation | evaluation of estimators | evaluation of estimators | Cramer-Rao theorem | Cramer-Rao theorem | hypothesis tests | hypothesis tests | Neyman Pearson lemma | Neyman Pearson lemma | Likelihood Ratio test | Likelihood Ratio test | interval estimation | interval estimation | best linear predictor | best linear predictor | best linear approximation | best linear approximation | conditional expectation function | conditional expectation function | building functional forms | building functional forms | regression algebra | regression algebra | Gauss-Markov optimality | Gauss-Markov optimality | finite-sample inference | finite-sample inference | consistency | consistency | asymptotic normality | asymptotic normality | heteroscedasticity | heteroscedasticity | autocorrelation | autocorrelationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.438 Algorithms for Inference (MIT) 6.438 Algorithms for Inference (MIT)

Description

This is a graduate-level introduction to the principles of statistical inference with probabilistic models defined using graphical representations. The material in this course constitutes a common foundation for work in machine learning, signal processing, artificial intelligence, computer vision, control, and communication. Ultimately, the subject is about teaching you contemporary approaches to, and perspectives on, problems of statistical inference. This is a graduate-level introduction to the principles of statistical inference with probabilistic models defined using graphical representations. The material in this course constitutes a common foundation for work in machine learning, signal processing, artificial intelligence, computer vision, control, and communication. Ultimately, the subject is about teaching you contemporary approaches to, and perspectives on, problems of statistical inference.Subjects

inference | inference | algorithm | algorithm | graphical model | graphical model | factor graph | factor graph | markov chain | markov chain | Gaussian model | Gaussian model | loopy belief propagation | loopy belief propagation | EM algorithm | EM algorithm | statistical inference | statistical inference | probabilistic graphical model | probabilistic graphical model | Hidden Markov model | Hidden Markov model | linear dynamical systems | linear dynamical systems | Sum-product algorithm | Sum-product algorithm | junction tree algorithm | junction tree algorithm | Forward-backward algorithm | Forward-backward algorithm | Kalman filtering | Kalman filtering | smoothing | smoothing | Variational method | Variational method | mean-field theory | mean-field theory | Min-sum algorithm | Min-sum algorithm | Viterbi algorithm | Viterbi algorithm | parameter estimation | parameter estimation | learning structure | learning structureLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.010 Uncertainty in Engineering (MIT) 1.010 Uncertainty in Engineering (MIT)

Description

This undergraduate class serves as an introduction to probability and statistics, with emphasis on engineering applications. The first segment discusses events and their probability, Bayes' Theorem, discrete and continuous random variables and vectors, univariate and multivariate distributions, Bernoulli trials and Poisson point processes, and full-distribution uncertainty propagation and conditional analysis. The second segment deals with second-moment representation of uncertainty and second-moment uncertainty propagation and conditional analysis. The final segment covers random sampling, point and interval estimation, hypothesis testing, and linear regression. Many of the concepts covered in class are illustrated with real-world examples from various areas of engineering. This undergraduate class serves as an introduction to probability and statistics, with emphasis on engineering applications. The first segment discusses events and their probability, Bayes' Theorem, discrete and continuous random variables and vectors, univariate and multivariate distributions, Bernoulli trials and Poisson point processes, and full-distribution uncertainty propagation and conditional analysis. The second segment deals with second-moment representation of uncertainty and second-moment uncertainty propagation and conditional analysis. The final segment covers random sampling, point and interval estimation, hypothesis testing, and linear regression. Many of the concepts covered in class are illustrated with real-world examples from various areas of engineering.Subjects

statistics | statistics | decision analysis | decision analysis | random variables and vectors | random variables and vectors | uncertainty propagation | uncertainty propagation | conditional distributions | conditional distributions | second-moment analysis | second-moment analysis | system reliability | system reliability | Bayesian analysis and risk-based decision | Bayesian analysis and risk-based decision | estimation of distribution parameters | estimation of distribution parameters | hypothesis testing | hypothesis testing | simple and multiple linear regressions | simple and multiple linear regressions | Poisson and Markov processes | Poisson and Markov processesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.436J Fundamentals of Probability (MIT) 6.436J Fundamentals of Probability (MIT)

Description

This is a course on the fundamentals of probability geared towards first or second-year graduate students who are interested in a rigorous development of the subject. The course covers most of the topics in MIT course 6.431 but at a faster pace and in more depth. Topics covered include: probability spaces and measures; discrete and continuous random variables; conditioning and independence; multivariate normal distribution; abstract integration, expectation, and related convergence results; moment generating and characteristic functions; Bernoulli and Poisson processes; finite-state Markov chains; convergence notions and their relations; and limit theorems. Familiarity with elementary notions in probability and real analysis is desirable. This is a course on the fundamentals of probability geared towards first or second-year graduate students who are interested in a rigorous development of the subject. The course covers most of the topics in MIT course 6.431 but at a faster pace and in more depth. Topics covered include: probability spaces and measures; discrete and continuous random variables; conditioning and independence; multivariate normal distribution; abstract integration, expectation, and related convergence results; moment generating and characteristic functions; Bernoulli and Poisson processes; finite-state Markov chains; convergence notions and their relations; and limit theorems. Familiarity with elementary notions in probability and real analysis is desirable.Subjects

Introduction to probability theory | Introduction to probability theory | Probability spaces and measures | Probability spaces and measures | Discrete and continuous random variables | Discrete and continuous random variables | Conditioning and independence | Conditioning and independence | Multivariate normal distribution | Multivariate normal distribution | Abstract integration | Abstract integration | expectation | expectation | and related convergence results | and related convergence results | Moment generating and characteristic functions | Moment generating and characteristic functions | Bernoulli and Poisson process | Bernoulli and Poisson process | Finite-state Markov chains | Finite-state Markov chains | Convergence notions and their relations | Convergence notions and their relations | Limit theorems | Limit theorems | Familiarity with elementary notions in probability and real analysis is desirable | Familiarity with elementary notions in probability and real analysis is desirableLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata