Searching for NRC : 6 results found | RSS Feed for this search

22.39 Integration of Reactor Design, Operations, and Safety (MIT) 22.39 Integration of Reactor Design, Operations, and Safety (MIT)

Description

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.Technical RequirementsSpecial software is required to use some of the files in this course: .exe and .zip. The .in files are input data files. This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.Technical RequirementsSpecial software is required to use some of the files in this course: .exe and .zip. The .in files are input data files.

Subjects

nuclear reactor | nuclear reactor | nuclear power | nuclear power | NRC | NRC | PWR | PWR | pressurized water reactor | pressurized water reactor | GFR | GFR | nuclear safety | nuclear safety | meltdown | meltdown | nuclear risk | nuclear risk | PRA | PRA | probabalistic risk assessment | probabalistic risk assessment | risk assessment | risk assessment | thermal | thermal | hydraulic | hydraulic | nuclear fuel | nuclear fuel | nuclear waste | nuclear waste | accident | accident | radiation | radiation | radioactivity | radioactivity | nuclear plant | nuclear plant | cooling | cooling | seabrook | seabrook | fission | fission | uranium | uranium | half-life | half-life | plutonium | plutonium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.39 Integration of Reactor Design, Operations, and Safety (MIT) 22.39 Integration of Reactor Design, Operations, and Safety (MIT)

Description

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations. This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.

Subjects

nuclear reactor | nuclear reactor | nuclear power | nuclear power | NRC | NRC | PWR | PWR | pressurized water reactor | pressurized water reactor | GFR | GFR | LWR | LWR | light water reactor | light water reactor | nuclear safety | nuclear safety | meltdown | meltdown | nuclear risk | nuclear risk | PRA | PRA | probabalistic risk assessment | probabalistic risk assessment | risk assessment | risk assessment | thermal | thermal | hydraulic | hydraulic | nuclear fuel | nuclear fuel | nuclear waste | nuclear waste | accident | accident | radiation radioactivity | radiation radioactivity | nuclear plant | nuclear plant | cooling Seabrook | cooling Seabrook | fission | fission | uranium | uranium | half-life | half-life | plutonium | plutonium | economics of nuclear power | economics of nuclear power | materials slection | materials slection | IRIS | IRIS | materials selection | materials selection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.10 Introduction to Technology and Policy (MIT) ESD.10 Introduction to Technology and Policy (MIT)

Description

This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and g This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and g

Subjects

Politics | Politics | decision making | decision making | negotiation | negotiation | planning | planning | wedge game | wedge game | climate change | climate change | global warming | global warming | NRC | NRC | nuclear power | nuclear power | nuclear energy | nuclear energy | nuclear proliferation | nuclear proliferation | government | government | public policy | public policy | globalization | globalization | science | science | EPA | EPA | NSF | NSF | transportation | transportation | urban planning | urban planning | standards | standards | risk | risk | risk assessment | risk assessment | engineering | engineering | energy | energy | internet | internet | network neutrality | network neutrality | regulation | regulation | security | security | 9/11 | 9/11 | September 11 | September 11 | terrorism | terrorism | defense | defense | tradeoff | tradeoff

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ESD.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.39 Integration of Reactor Design, Operations, and Safety (MIT)

Description

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.Technical RequirementsSpecial software is required to use some of the files in this course: .exe and .zip. The .in files are input data files.

Subjects

nuclear reactor | nuclear power | NRC | PWR | pressurized water reactor | GFR | nuclear safety | meltdown | nuclear risk | PRA | probabalistic risk assessment | risk assessment | thermal | hydraulic | nuclear fuel | nuclear waste | accident | radiation | radioactivity | nuclear plant | cooling | seabrook | fission | uranium | half-life | plutonium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.39 Integration of Reactor Design, Operations, and Safety (MIT)

Description

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.

Subjects

nuclear reactor | nuclear power | NRC | PWR | pressurized water reactor | GFR | LWR | light water reactor | nuclear safety | meltdown | nuclear risk | PRA | probabalistic risk assessment | risk assessment | thermal | hydraulic | nuclear fuel | nuclear waste | accident | radiation radioactivity | nuclear plant | cooling Seabrook | fission | uranium | half-life | plutonium | economics of nuclear power | materials slection | IRIS | materials selection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.10 Introduction to Technology and Policy (MIT)

Description

This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and g

Subjects

Politics | decision making | negotiation | planning | wedge game | climate change | global warming | NRC | nuclear power | nuclear energy | nuclear proliferation | government | public policy | globalization | science | EPA | NSF | transportation | urban planning | standards | risk | risk assessment | engineering | energy | internet | network neutrality | regulation | security | 9/11 | September 11 | terrorism | defense | tradeoff

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata