Searching for Simplex : 4 results found | RSS Feed for this search

Description

This course is an introduction to linear optimization and its extensions emphasizing the underlying mathematical structures, geometrical ideas, algorithms and solutions of practical problems. The topics covered include: formulations, the geometry of linear optimization, duality theory, the simplex method, sensitivity analysis, robust optimization, large scale optimization network flows, solving problems with an exponential number of constraints and the ellipsoid method, interior point methods, semidefinite optimization, solving real world problems problems with computer software, discrete optimization formulations and algorithms. This course is an introduction to linear optimization and its extensions emphasizing the underlying mathematical structures, geometrical ideas, algorithms and solutions of practical problems. The topics covered include: formulations, the geometry of linear optimization, duality theory, the simplex method, sensitivity analysis, robust optimization, large scale optimization network flows, solving problems with an exponential number of constraints and the ellipsoid method, interior point methods, semidefinite optimization, solving real world problems problems with computer software, discrete optimization formulations and algorithms.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

El curso trata de mostrar una visión amplia de las técnicas que se recogen bajo la denominación de Investigación Operativa (IO), agrupándolas en tres grandes bloques (métodos deterministas, métodos probabilísticos y otros métodos como simulación, toma de decisiones, participación pública). Dentro de cada bloque se expone brevemente en qué consiste cada método y se acompaña con ejemplos y ejercicios de aplicación. El curso trata de mostrar una visión amplia de las técnicas que se recogen bajo la denominación de Investigación Operativa (IO), agrupándolas en tres grandes bloques (métodos deterministas, métodos probabilísticos y otros métodos como simulación, toma de decisiones, participación pública). Dentro de cada bloque se expone brevemente en qué consiste cada método y se acompaña con ejemplos y ejercicios de aplicación.

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course is an introduction to linear optimization and its extensions emphasizing the underlying mathematical structures, geometrical ideas, algorithms and solutions of practical problems. The topics covered include: formulations, the geometry of linear optimization, duality theory, the simplex method, sensitivity analysis, robust optimization, large scale optimization network flows, solving problems with an exponential number of constraints and the ellipsoid method, interior point methods, semidefinite optimization, solving real world problems problems with computer software, discrete optimization formulations and algorithms.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from