Searching for Smoothers : 2 results found | RSS Feed for this search

12.S990 Quantifying Uncertainty (MIT) 12.S990 Quantifying Uncertainty (MIT)

Description

The ability to quantify the uncertainty in our models of nature is fundamental to many inference problems in Science and Engineering. In this course, we study advanced methods to represent, sample, update and propagate uncertainty. This is a "hands on" course: Methodology will be coupled with applications. The course will include lectures, invited talks, discussions, reviews and projects and will meet once a week to discuss a method and its applications. The ability to quantify the uncertainty in our models of nature is fundamental to many inference problems in Science and Engineering. In this course, we study advanced methods to represent, sample, update and propagate uncertainty. This is a "hands on" course: Methodology will be coupled with applications. The course will include lectures, invited talks, discussions, reviews and projects and will meet once a week to discuss a method and its applications.

Subjects

boundary value problems | boundary value problems | Polynomial Chaos | Polynomial Chaos | Hierarchical Bayes | Hierarchical Bayes | Variational Bayes | Variational Bayes | Smoothers | Smoothers | Dimensionality Reduction | Dimensionality Reduction | Sparse Optimization | Sparse Optimization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.S990 Quantifying Uncertainty (MIT)

Description

The ability to quantify the uncertainty in our models of nature is fundamental to many inference problems in Science and Engineering. In this course, we study advanced methods to represent, sample, update and propagate uncertainty. This is a "hands on" course: Methodology will be coupled with applications. The course will include lectures, invited talks, discussions, reviews and projects and will meet once a week to discuss a method and its applications.

Subjects

boundary value problems | Polynomial Chaos | Hierarchical Bayes | Variational Bayes | Smoothers | Dimensionality Reduction | Sparse Optimization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata