Searching for Stirling : 7 results found | RSS Feed for this search

2.670 Mechanical Engineering Tools (MIT) 2.670 Mechanical Engineering Tools (MIT)

Description

This course introduces the fundamentals of machine tool and computer tool use. Students work with a variety of machine tools including the bandsaw, milling machine, and lathe. Instruction given on MATLAB®, MAPLE®, XESS™, and CAD. Emphasis is on problem solving, not programming or algorithmic development. Assignments are project-oriented relating to mechanical engineering topics. It is recommended that students take this subject in the first IAP after declaring the major in Mechanical Engineering. This course was co-created by Prof. Douglas Hart and Dr. Kevin Otto. This course introduces the fundamentals of machine tool and computer tool use. Students work with a variety of machine tools including the bandsaw, milling machine, and lathe. Instruction given on MATLAB®, MAPLE®, XESS™, and CAD. Emphasis is on problem solving, not programming or algorithmic development. Assignments are project-oriented relating to mechanical engineering topics. It is recommended that students take this subject in the first IAP after declaring the major in Mechanical Engineering. This course was co-created by Prof. Douglas Hart and Dr. Kevin Otto.

Subjects

fundamentals of machine tool and computer tool use | fundamentals of machine tool and computer tool use | bandsaw | bandsaw | milling machine | milling machine | lathe | lathe | MATLAB | MATLAB | MAPLE | MAPLE | XESS | XESS | CAD | CAD | problem solving | problem solving | project-oriented | project-oriented | machine tool use | machine tool use | computer tool use | computer tool use | mechanical engineering projects | mechanical engineering projects | Inter Activities Period | Inter Activities Period | IAP | IAP | engine design | engine design | engine construction | engine construction | Stirling engines | Stirling engines

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.100A Introduction to Analysis (MIT) 18.100A Introduction to Analysis (MIT)

Description

Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla

Subjects

mathematical analysis | mathematical analysis | estimations | estimations | limit of a sequence | limit of a sequence | limit theorems | limit theorems | subsequences | subsequences | cluster points | cluster points | infinite series | infinite series | power series | power series | local and global properties | local and global properties | continuity | continuity | intermediate-value theorem | intermediate-value theorem | convexity | convexity | integrability | integrability | Riemann integral | Riemann integral | calculus | calculus | convergence | convergence | Gamma function | Gamma function | Stirling | Stirling | quantifiers and negation | quantifiers and negation | Leibniz | Leibniz | Fubini | Fubini | improper integrals | improper integrals | Lebesgue integral | Lebesgue integral | mathematical proofs | mathematical proofs | differentiation | differentiation | integration | integration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.104 Seminar in Analysis: Applications to Number Theory (MIT) 18.104 Seminar in Analysis: Applications to Number Theory (MIT)

Description

18.104 is an undergraduate level seminar for mathematics majors. Students present and discuss subject matter taken from current journals or books. Instruction and practice in written and oral communication is provided. The topics vary from year to year. The topic for this term is Applications to Number Theory. 18.104 is an undergraduate level seminar for mathematics majors. Students present and discuss subject matter taken from current journals or books. Instruction and practice in written and oral communication is provided. The topics vary from year to year. The topic for this term is Applications to Number Theory.

Subjects

Infinitude of the primes | Infinitude of the primes | Summing powers of integers | Summing powers of integers | Bernoulli polynomials | Bernoulli polynomials | sine product formula | sine product formula | $\zeta(2n)$ | $\zeta(2n)$ | Fermat's Little Theorem | Fermat's Little Theorem | Fermat's Great Theorem | Fermat's Great Theorem | Averages of arithmetic functions | Averages of arithmetic functions | arithmetic-geometric mean | arithmetic-geometric mean | Gauss' theorem | Gauss' theorem | Wallis's formula | Wallis's formula | Stirling's formula | Stirling's formula | prime number theorem | prime number theorem | Riemann's hypothesis | Riemann's hypothesis | Euler's proof of infinitude of primes | Euler's proof of infinitude of primes | Density of prime numbers | Density of prime numbers | Euclidean algorithm | Euclidean algorithm | Golden Ratio | Golden Ratio

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.100A Introduction to Analysis (MIT)

Description

Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla

Subjects

mathematical analysis | estimations | limit of a sequence | limit theorems | subsequences | cluster points | infinite series | power series | local and global properties | continuity | intermediate-value theorem | convexity | integrability | Riemann integral | calculus | convergence | Gamma function | Stirling | quantifiers and negation | Leibniz | Fubini | improper integrals | Lebesgue integral | mathematical proofs | differentiation | integration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.670 Mechanical Engineering Tools (MIT)

Description

This course introduces the fundamentals of machine tool and computer tool use. Students work with a variety of machine tools including the bandsaw, milling machine, and lathe. Instruction given on MATLAB®, MAPLE®, XESS™, and CAD. Emphasis is on problem solving, not programming or algorithmic development. Assignments are project-oriented relating to mechanical engineering topics. It is recommended that students take this subject in the first IAP after declaring the major in Mechanical Engineering. This course was co-created by Prof. Douglas Hart and Dr. Kevin Otto.

Subjects

fundamentals of machine tool and computer tool use | bandsaw | milling machine | lathe | MATLAB | MAPLE | XESS | CAD | problem solving | project-oriented | machine tool use | computer tool use | mechanical engineering projects | Inter Activities Period | IAP | engine design | engine construction | Stirling engines

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.104 Seminar in Analysis: Applications to Number Theory (MIT)

Description

18.104 is an undergraduate level seminar for mathematics majors. Students present and discuss subject matter taken from current journals or books. Instruction and practice in written and oral communication is provided. The topics vary from year to year. The topic for this term is Applications to Number Theory.

Subjects

Infinitude of the primes | Summing powers of integers | Bernoulli polynomials | sine product formula | $\zeta(2n)$ | Fermat's Little Theorem | Fermat's Great Theorem | Averages of arithmetic functions | arithmetic-geometric mean | Gauss' theorem | Wallis's formula | Stirling's formula | prime number theorem | Riemann's hypothesis | Euler's proof of infinitude of primes | Density of prime numbers | Euclidean algorithm | Golden Ratio

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.670 Mechanical Engineering Tools (MIT)

Description

This course introduces the fundamentals of machine tool and computer tool use. Students work with a variety of machine tools including the bandsaw, milling machine, and lathe. Instruction given on MATLAB®, MAPLE®, XESS™, and CAD. Emphasis is on problem solving, not programming or algorithmic development. Assignments are project-oriented relating to mechanical engineering topics. It is recommended that students take this subject in the first IAP after declaring the major in Mechanical Engineering. This course was co-created by Prof. Douglas Hart and Dr. Kevin Otto.

Subjects

fundamentals of machine tool and computer tool use | bandsaw | milling machine | lathe | MATLAB | MAPLE | XESS | CAD | problem solving | project-oriented | machine tool use | computer tool use | mechanical engineering projects | Inter Activities Period | IAP | engine design | engine construction | Stirling engines

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata