Searching for Ultrasound : 3 results found | RSS Feed for this search

22.058 Principles of Medical Imaging (MIT) 22.058 Principles of Medical Imaging (MIT)

Description

An introduction to the principles of tomographic imaging and its applications. It includes a series of lectures with a parallel set of recitations that provide demonstrations of basic principles. Both ionizing and non-ionizing radiation are covered, including x-ray, PET, MRI, and ultrasound. Emphasis on the physics and engineering of image formation. An introduction to the principles of tomographic imaging and its applications. It includes a series of lectures with a parallel set of recitations that provide demonstrations of basic principles. Both ionizing and non-ionizing radiation are covered, including x-ray, PET, MRI, and ultrasound. Emphasis on the physics and engineering of image formation.

Subjects

general imaging principles | | general imaging principles | | linear optics | | linear optics | | ray tracing | | ray tracing | | Linear Imaging Systems | | Linear Imaging Systems | | Space Invariance | | Space Invariance | | Pin-hole camera | | Pin-hole camera | | Fourier Transformations | | Fourier Transformations | | Modulation Transfer Functions | | Modulation Transfer Functions | | Fourier convolution | | Fourier convolution | | Sampling | | Sampling | | Nyquist | | Nyquist | | counting statistics | | counting statistics | | additive noise | | additive noise | | optical imaging | | optical imaging | | Radiation types | | Radiation types | | Radiation detection | | Radiation detection | | photon detection | | photon detection | | spectra | | spectra | | attenuation | | attenuation | | Planar X-ray imaging | | Planar X-ray imaging | | Projective Imaging | | Projective Imaging | | X-ray CT | | X-ray CT | | Ultrasound | | Ultrasound | | microscopy | k-space | | microscopy | k-space | | NMR pulses | | NMR pulses | | f2-D gradient | | f2-D gradient | | spin echoes | | spin echoes | | 3-D methods of MRI | | 3-D methods of MRI | | volume localized spectroscopy | volume localized spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.058 Principles of Medical Imaging (MIT)

Description

An introduction to the principles of tomographic imaging and its applications. It includes a series of lectures with a parallel set of recitations that provide demonstrations of basic principles. Both ionizing and non-ionizing radiation are covered, including x-ray, PET, MRI, and ultrasound. Emphasis on the physics and engineering of image formation.

Subjects

general imaging principles | | linear optics | | ray tracing | | Linear Imaging Systems | | Space Invariance | | Pin-hole camera | | Fourier Transformations | | Modulation Transfer Functions | | Fourier convolution | | Sampling | | Nyquist | | counting statistics | | additive noise | | optical imaging | | Radiation types | | Radiation detection | | photon detection | | spectra | | attenuation | | Planar X-ray imaging | | Projective Imaging | | X-ray CT | | Ultrasound | | microscopy | k-space | | NMR pulses | | f2-D gradient | | spin echoes | | 3-D methods of MRI | | volume localized spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.058 Principles of Medical Imaging (MIT)

Description

An introduction to the principles of tomographic imaging and its applications. It includes a series of lectures with a parallel set of recitations that provide demonstrations of basic principles. Both ionizing and non-ionizing radiation are covered, including x-ray, PET, MRI, and ultrasound. Emphasis on the physics and engineering of image formation.

Subjects

general imaging principles | | linear optics | | ray tracing | | Linear Imaging Systems | | Space Invariance | | Pin-hole camera | | Fourier Transformations | | Modulation Transfer Functions | | Fourier convolution | | Sampling | | Nyquist | | counting statistics | | additive noise | | optical imaging | | Radiation types | | Radiation detection | | photon detection | | spectra | | attenuation | | Planar X-ray imaging | | Projective Imaging | | X-ray CT | | Ultrasound | | microscopy | k-space | | NMR pulses | | f2-D gradient | | spin echoes | | 3-D methods of MRI | | volume localized spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata