Searching for algorithm : 401 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Readme file for Computer Science Concepts

Description

This readme file contains details of links to all the Computer Science Concepts module's material held on Jorum and information about the module as well.Subjects

ukoer | strings lecture | induction and recursion lecture | induction lecture | recursion lecture | complexity lecture | languages lecture | computer sciences concepts test | computer science concepts test | computer science concepts assignment | computer science concepts practical | introduction | computer science concepts | computer science concept | computer science | strings and languages | strings and language | string and languages | string and language | string | language | languages | finite automata | automata | finite | push down automata | push down | prolog | data structures and algorithms | data structure and algorithms | data structures and algorithm | data structure and algorithm | data structures | data structure | algorithms | algorithm | revision exercises | revision | induction and recursion | induction | recursion | turing machines | turing machine | turing | machine | machines | complexity | grammar | grammar and languages | grammar and language | introduction lecture | computer science concepts lecture | computer science concept lecture | computer science lecture | strings and languages lecture | strings and language lecture | string and languages lecture | string and language lecture | string lecture | language lecture | finite automata lecture | automata lecture | finite lecture | push down automata lecture | push down lecture | prolog lecture | data structures and algorithms lecture | data structure and algorithms lecture | data structures and algorithm lecture | data structure and algorithm lecture | data structures lecture | data structure lecture | algorithms lecture | algorithm lecture | revision exercises lecture | revision lecture | turing machines lecture | turing machine lecture | turing lecture | machine lecture | machines lecture | computer science class test | computer science concept class test | computer science concepts class test | strings and languages class test | strings and language class test | string and languages class test | string and language class test | string class test | language class test | languages class test | introduction class test | grammar lecture | grammar and languages lecture | grammar and language lecture | computer science assignment | computer science concept assignment | strings and languages assignment | strings and language assignment | string and languages assignment | string and language assignment | string assignment | language assignment | languages assignment | finite automata class test | automata class test | finite class test | finite automata assignment | automata assignment | finite assignment | push down automata class test | push down class test | push down automata assignment | push down assignment | prolog class test | data structures and algorithms class test | data structure and algorithms class test | data structures and algorithm class test | data structure and algorithm class test | data structures class test | data structure class test | algorithms class test | algorithm class test | computer science practical | computer science concept practical | data structures and algorithms practical | data structure and algorithms practical | data structures and algorithm practical | data structure and algorithm practical | data structures practical | data structure practical | algorithms practical | algorithm practical | revision exercises class test | revision class test | induction and recursion class test | induction class test | recursion class test | induction and recursion assignment | induction assignment | recursion assignment | turing machines class test | turing machine class test | turing class test | machine class test | machines class test | turing machines assignment | turing machine assignment | turing assignment | machine assignment | machines assignment | complexity class test | grammar class test | grammar and languages class test | grammar and language class test | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.854J Advanced Algorithms (MIT) 6.854J Advanced Algorithms (MIT)

Description

6.854J is a first-year graduate course in algorithms, continuing where 6.046J left off. The course emphasizes fundamental algorithms and advanced methods of algorithmic design, analysis, and implementation. Topics include: data structures, network flows, linear programming, computational geometry, approximation algorithms. 6.854J is a first-year graduate course in algorithms, continuing where 6.046J left off. The course emphasizes fundamental algorithms and advanced methods of algorithmic design, analysis, and implementation. Topics include: data structures, network flows, linear programming, computational geometry, approximation algorithms.Subjects

algorithm design and analysis | algorithm design and analysis | algorithms | algorithms | fundamental algorithms | fundamental algorithms | advanced methods of algorithmic design | advanced methods of algorithmic design | analysis | analysis | implementation | implementation | data structures | data structures | network flows | network flows | linear programming | linear programming | computational geometry | computational geometry | approximation algorithms | approximation algorithms | algorithmic design | algorithmic design | algorithmic analysis | algorithmic analysis | string algorithms | string algorithms | maximum flows | maximum flows | online algorithms | online algorithms | scheduling | scheduling | external memory algorithms | external memory algorithms | 6.854 | 6.854 | 18.415 | 18.415License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.856J Randomized Algorithms (MIT) 6.856J Randomized Algorithms (MIT)

Description

This course examines how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Topics covered include: randomized computation; data structures (hash tables, skip lists); graph algorithms (minimum spanning trees, shortest paths, minimum cuts); geometric algorithms (convex hulls, linear programming in fixed or arbitrary dimension); approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms. This course examines how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Topics covered include: randomized computation; data structures (hash tables, skip lists); graph algorithms (minimum spanning trees, shortest paths, minimum cuts); geometric algorithms (convex hulls, linear programming in fixed or arbitrary dimension); approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms.Subjects

Randomized Algorithms | Randomized Algorithms | algorithms | algorithms | efficient in time and space | efficient in time and space | randomization | randomization | computational problems | computational problems | data structures | data structures | graph algorithms | graph algorithms | optimization | optimization | geometry | geometry | Markov chains | Markov chains | sampling | sampling | estimation | estimation | geometric algorithms | geometric algorithms | parallel and distributed algorithms | parallel and distributed algorithms | parallel and ditributed algorithm | parallel and ditributed algorithm | parallel and distributed algorithm | parallel and distributed algorithm | random sampling | random sampling | random selection of witnesses | random selection of witnesses | symmetry breaking | symmetry breaking | randomized computational models | randomized computational models | hash tables | hash tables | skip lists | skip lists | minimum spanning trees | minimum spanning trees | shortest paths | shortest paths | minimum cuts | minimum cuts | convex hulls | convex hulls | linear programming | linear programming | fixed dimension | fixed dimension | arbitrary dimension | arbitrary dimension | approximate counting | approximate counting | parallel algorithms | parallel algorithms | online algorithms | online algorithms | derandomization techniques | derandomization techniques | probabilistic analysis | probabilistic analysis | computational number theory | computational number theory | simplicity | simplicity | speed | speed | design | design | basic probability theory | basic probability theory | application | application | randomized complexity classes | randomized complexity classes | game-theoretic techniques | game-theoretic techniques | Chebyshev | Chebyshev | moment inequalities | moment inequalities | limited independence | limited independence | coupon collection | coupon collection | occupancy problems | occupancy problems | tail inequalities | tail inequalities | Chernoff bound | Chernoff bound | conditional expectation | conditional expectation | probabilistic method | probabilistic method | random walks | random walks | algebraic techniques | algebraic techniques | probability amplification | probability amplification | sorting | sorting | searching | searching | combinatorial optimization | combinatorial optimization | approximation | approximation | counting problems | counting problems | distributed algorithms | distributed algorithms | 6.856 | 6.856 | 18.416 | 18.416License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.438 Algorithms for Inference (MIT) 6.438 Algorithms for Inference (MIT)

Description

This is a graduate-level introduction to the principles of statistical inference with probabilistic models defined using graphical representations. The material in this course constitutes a common foundation for work in machine learning, signal processing, artificial intelligence, computer vision, control, and communication. Ultimately, the subject is about teaching you contemporary approaches to, and perspectives on, problems of statistical inference. This is a graduate-level introduction to the principles of statistical inference with probabilistic models defined using graphical representations. The material in this course constitutes a common foundation for work in machine learning, signal processing, artificial intelligence, computer vision, control, and communication. Ultimately, the subject is about teaching you contemporary approaches to, and perspectives on, problems of statistical inference.Subjects

inference | inference | algorithm | algorithm | graphical model | graphical model | factor graph | factor graph | markov chain | markov chain | Gaussian model | Gaussian model | loopy belief propagation | loopy belief propagation | EM algorithm | EM algorithm | statistical inference | statistical inference | probabilistic graphical model | probabilistic graphical model | Hidden Markov model | Hidden Markov model | linear dynamical systems | linear dynamical systems | Sum-product algorithm | Sum-product algorithm | junction tree algorithm | junction tree algorithm | Forward-backward algorithm | Forward-backward algorithm | Kalman filtering | Kalman filtering | smoothing | smoothing | Variational method | Variational method | mean-field theory | mean-field theory | Min-sum algorithm | Min-sum algorithm | Viterbi algorithm | Viterbi algorithm | parameter estimation | parameter estimation | learning structure | learning structureLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataComputer Science Concepts - Data structures and algorithms

Description

This lecture forms part of the "Data structures and algorithms" topic of the Computer Science Concepts module.Subjects

ukoer | computer science | computer science concept | computer science concepts | data structures and algorithms | data structure and algorithms | data structures and algorithm | data structure and algorithm | data structures | data structure | algorithms | algorithm | computer science lecture | computer science concept lecture | computer science concepts lecture | data structures and algorithms lecture | data structure and algorithms lecture | data structures and algorithm lecture | data structure and algorithm lecture | data structures lecture | data structure lecture | algorithms lecture | algorithm lecture | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataComputer Science Concepts - Data structures and algorithms

Description

This class test forms part of the "Data structures and algorithms" topic of the Computer Science Concepts module.Subjects

ukoer | computer science concepts test | computer science | computer science concept | computer science concepts | data structures and algorithms | data structure and algorithms | data structures and algorithm | data structure and algorithm | data structures | data structure | algorithms | algorithm | computer science class test | computer science concept class test | computer science concepts class test | data structures and algorithms class test | data structure and algorithms class test | data structures and algorithm class test | data structure and algorithm class test | data structures class test | data structure class test | algorithms class test | algorithm class test | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataComputer Science Concepts - Data structures and algorithms

Description

This class test forms part of the "Data structures and algorithms" topic of the Computer Science Concepts module.Subjects

ukoer | computer science concepts test | computer science | computer science concept | computer science concepts | data structures and algorithms | data structure and algorithms | data structures and algorithm | data structure and algorithm | data structures | data structure | algorithms | algorithm | computer science class test | computer science concept class test | computer science concepts class test | data structures and algorithms class test | data structure and algorithms class test | data structures and algorithm class test | data structure and algorithm class test | data structures class test | data structure class test | algorithms class test | algorithm class test | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataComputer Science Concepts - Data structures and algorithms

Description

This practical forms part of the "Data structures and algorithms" topic of the Computer Science Concepts module.Subjects

ukoer | computer science concepts practical | computer science | computer science concept | computer science concepts | data structures and algorithms | data structure and algorithms | data structures and algorithm | data structure and algorithm | data structures | data structure | algorithms | algorithm | computer science practical | computer science concept practical | data structures and algorithms practical | data structure and algorithms practical | data structures and algorithm practical | data structure and algorithm practical | data structures practical | data structure practical | algorithms practical | algorithm practical | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata15.099 Readings in Optimization (MIT) 15.099 Readings in Optimization (MIT)

Description

In keeping with the tradition of the last twenty-some years, the Readings in Optimization seminar will focus on an advanced topic of interest to a portion of the MIT optimization community: randomized methods for deterministic optimization. In contrast to conventional optimization algorithms whose iterates are computed and analyzed deterministically, randomized methods rely on stochastic processes and random number/vector generation as part of the algorithm and/or its analysis. In the seminar, we will study some very recent papers on this topic, many by MIT faculty, as well as some older papers from the existing literature that are only now receiving attention. In keeping with the tradition of the last twenty-some years, the Readings in Optimization seminar will focus on an advanced topic of interest to a portion of the MIT optimization community: randomized methods for deterministic optimization. In contrast to conventional optimization algorithms whose iterates are computed and analyzed deterministically, randomized methods rely on stochastic processes and random number/vector generation as part of the algorithm and/or its analysis. In the seminar, we will study some very recent papers on this topic, many by MIT faculty, as well as some older papers from the existing literature that are only now receiving attention.Subjects

deterministic optimization; algorithms; stochastic processes; random number generation; simplex method; nonlinear; convex; complexity analysis; semidefinite programming; heuristic; global optimization; Las Vegas algorithm; randomized algorithm; linear programming; search techniques; hit and run; NP-hard; approximation | deterministic optimization; algorithms; stochastic processes; random number generation; simplex method; nonlinear; convex; complexity analysis; semidefinite programming; heuristic; global optimization; Las Vegas algorithm; randomized algorithm; linear programming; search techniques; hit and run; NP-hard; approximation | deterministic optimization | deterministic optimization | algorithms | algorithms | stochastic processes | stochastic processes | random number generation | random number generation | simplex method | simplex method | nonlinear | nonlinear | convex | convex | complexity analysis | complexity analysis | semidefinite programming | semidefinite programming | heuristic | heuristic | global optimization | global optimization | Las Vegas algorithm | Las Vegas algorithm | randomized algorithm | randomized algorithm | linear programming | linear programming | search techniques | search techniques | hit and run | hit and run | NP-hard | NP-hard | approximation | approximationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.854J Advanced Algorithms (MIT) 6.854J Advanced Algorithms (MIT)

Description

This course is a first-year graduate course in algorithms. Emphasis is placed on fundamental algorithms and advanced methods of algorithmic design, analysis, and implementation. Techniques to be covered include amortization, randomization, fingerprinting, word-level parallelism, bit scaling, dynamic programming, network flow, linear programming, fixed-parameter algorithms, and approximation algorithms. Domains include string algorithms, network optimization, parallel algorithms, computational geometry, online algorithms, external memory, cache, and streaming algorithms, and data structures. This course is a first-year graduate course in algorithms. Emphasis is placed on fundamental algorithms and advanced methods of algorithmic design, analysis, and implementation. Techniques to be covered include amortization, randomization, fingerprinting, word-level parallelism, bit scaling, dynamic programming, network flow, linear programming, fixed-parameter algorithms, and approximation algorithms. Domains include string algorithms, network optimization, parallel algorithms, computational geometry, online algorithms, external memory, cache, and streaming algorithms, and data structures.Subjects

amortization | amortization | randomization | randomization | fingerprinting | fingerprinting | word-level parallelism | word-level parallelism | bit scaling | bit scaling | dynamic programming | dynamic programming | network flow | network flow | linear programming | linear programming | fixed-parameter algorithms | fixed-parameter algorithms | approximation algorithms | approximation algorithms | string algorithms | string algorithms | network optimization | network optimization | parallel algorithms | parallel algorithms | computational geometry | computational geometry | online algorithms | online algorithms | external memory | external memory | external cache | external cache | external streaming | external streaming | data structures | data structuresLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.854J Advanced Algorithms (MIT)

Description

6.854J is a first-year graduate course in algorithms, continuing where 6.046J left off. The course emphasizes fundamental algorithms and advanced methods of algorithmic design, analysis, and implementation. Topics include: data structures, network flows, linear programming, computational geometry, approximation algorithms.Subjects

algorithm design and analysis | algorithms | fundamental algorithms | advanced methods of algorithmic design | analysis | implementation | data structures | network flows | linear programming | computational geometry | approximation algorithms | algorithmic design | algorithmic analysis | string algorithms | maximum flows | online algorithms | scheduling | external memory algorithms | 6.854 | 18.415License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.856J Randomized Algorithms (MIT)

Description

This course examines how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Topics covered include: randomized computation; data structures (hash tables, skip lists); graph algorithms (minimum spanning trees, shortest paths, minimum cuts); geometric algorithms (convex hulls, linear programming in fixed or arbitrary dimension); approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms.Subjects

Randomized Algorithms | algorithms | efficient in time and space | randomization | computational problems | data structures | graph algorithms | optimization | geometry | Markov chains | sampling | estimation | geometric algorithms | parallel and distributed algorithms | parallel and ditributed algorithm | parallel and distributed algorithm | random sampling | random selection of witnesses | symmetry breaking | randomized computational models | hash tables | skip lists | minimum spanning trees | shortest paths | minimum cuts | convex hulls | linear programming | fixed dimension | arbitrary dimension | approximate counting | parallel algorithms | online algorithms | derandomization techniques | probabilistic analysis | computational number theory | simplicity | speed | design | basic probability theory | application | randomized complexity classes | game-theoretic techniques | Chebyshev | moment inequalities | limited independence | coupon collection | occupancy problems | tail inequalities | Chernoff bound | conditional expectation | probabilistic method | random walks | algebraic techniques | probability amplification | sorting | searching | combinatorial optimization | approximation | counting problems | distributed algorithms | 6.856 | 18.416License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataReadme file for Introduction to Artificial Intelligence

Description

This readme file contains details of links to all the Introduction to Artificial Intelligence module's material held on Jorum and information about the module as well.Subjects

ukoer | evolutionary algorithm lecture | algorithm tutorial | genetic algorithm lecture | genetic algorithm example | evolutionary computation tutorial | artificial intelligence lecture | artificial intelligence tutorial | random processes reading material | semantic web reading material | neural networks video | evolutionary computation test | artificial intelligence test | knowledge representation test | neural networks test | evolutionary algorithm | genetic computation | genetic programming | evolutionary computation | artificial intelligence | introduction to artificial intelligence | search | problem solving | revision | knowledge representation | semantic web | neural network | neural networks | artificial neural networks | swarm intelligence | collective intelligence | robot societies | genetic computation lecture | genetic programming lecture | evolutionary computation lecture | introduction to artificial intelligence lecture | evolutionary algorithm tutorial | genetic computation tutorial | genetic programming tutorial | introduction to artificial intelligence tutorial | evolutionary algorithm example | genetic computation example | genetic programming example | evolutionary computation example | artificial intelligence example | introduction to artificial intelligence example | search lecture | problem solving lecture | search tutorial | problem solving tutorial | search example | problem solving example | revision reading material | search reading material | artificial intelligence reading material | introduction to artificial intelligence reading material | revision lecture | knowledge representation lecture | semantic web lecture | knowledge representation practical | semantic web practical | artificial intelligence practical | introduction to artificial intelligence practical | knowledge representation reading material | knowledge representation notes | semantic web notes | artificial intelligence notes | introduction to artificial intelligence notes | neural network lecture | neural networks lecture | artificial neural networks lecture | neural network reading material | neural networks reading material | artificial neural networks reading material | neural network practical | neural networks practical | artificial neural networks practical | neural network viewing material | neural networks viewing material | artificial neural networks viewing material | artificial intelligence viewing material | introduction to artificial intelligence viewing material | swarm intelligence lecture | collective intelligence lecture | robot societies lecture | swarm intelligence tutorial | collective intelligence tutorial | robot societies tutorial | evolutionary algorithm test | genetic computation test | genetic programming test | introduction to artificial intelligence test | search test | problem solving test | semantic web test | neural network test | artificial neural networks test | g700 | ai | g700 lecture | ai lecture | g700 tutorial | ai tutorial | g700 example | ai example | g700 reading material | ai reading material | g700 practical | ai practical | g700 notes | ai notes | g700 viewing material | ai viewing material | g700 test | ai test | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.852J Distributed Algorithms (MIT) 6.852J Distributed Algorithms (MIT)

Description

This course intends to provide a rigorous introduction to the most important research results in the area of distributed algorithms, and prepare interested students to carry out independent research in distributed algorithms. Topics covered include: design and analysis of concurrent algorithms, emphasizing those suitable for use in distributed networks, process synchronization, allocation of computational resources, distributed consensus, distributed graph algorithms, election of a leader in a network, distributed termination, deadlock detection, concurrency control, communication, and clock synchronization. Special consideration is given to issues of efficiency and fault tolerance. Formal models and proof methods for distributed computation are also discussed. Detailed information on the This course intends to provide a rigorous introduction to the most important research results in the area of distributed algorithms, and prepare interested students to carry out independent research in distributed algorithms. Topics covered include: design and analysis of concurrent algorithms, emphasizing those suitable for use in distributed networks, process synchronization, allocation of computational resources, distributed consensus, distributed graph algorithms, election of a leader in a network, distributed termination, deadlock detection, concurrency control, communication, and clock synchronization. Special consideration is given to issues of efficiency and fault tolerance. Formal models and proof methods for distributed computation are also discussed. Detailed information on theSubjects

distributed algorithms | distributed algorithms | algorithm | algorithm | concurrent algorithms | concurrent algorithms | distributed networks | distributed networks | process synchronization | process synchronization | computational resources | computational resources | distributed consensus | distributed consensus | distributed graph algorithms | distributed graph algorithms | distributed termination | distributed termination | deadlock detection | deadlock detection | concurrency control | concurrency control | communication | communication | clock synchronization | clock synchronization | fault tolerance | fault tolerance | distributed computation | distributed computation | 6.852 | 6.852 | 18.437 | 18.437License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Includes audio/video content: AV lectures. This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5503 (Analysis and Design of Algorithms). Includes audio/video content: AV lectures. This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5503 (Analysis and Design of Algorithms).Subjects

algorithms | algorithms | efficient algorithms | efficient algorithms | sorting | sorting | search trees | search trees | heaps | heaps | hashing | hashing | divide-and-conquer | divide-and-conquer | dynamic programming | dynamic programming | amortized analysis | amortized analysis | graph algorithms | graph algorithms | shortest paths | shortest paths | network flow | network flow | computational geometry | computational geometry | number-theoretic algorithms | number-theoretic algorithms | polynomial and matrix calculations | polynomial and matrix calculations | caching | caching | parallel computing | parallel computingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata15.082J Network Optimization (MIT) 15.082J Network Optimization (MIT)

Description

15.082J/6.855J/ESD.78J is a graduate subject in the theory and practice of network flows and its extensions. Network flow problems form a subclass of linear programming problems with applications to transportation, logistics, manufacturing, computer science, project management, and finance, as well as a number of other domains. This subject will survey some of the applications of network flows and focus on key special cases of network flow problems including the following: the shortest path problem, the maximum flow problem, the minimum cost flow problem, and the multi-commodity flow problem. We will also consider other extensions of network flow problems. 15.082J/6.855J/ESD.78J is a graduate subject in the theory and practice of network flows and its extensions. Network flow problems form a subclass of linear programming problems with applications to transportation, logistics, manufacturing, computer science, project management, and finance, as well as a number of other domains. This subject will survey some of the applications of network flows and focus on key special cases of network flow problems including the following: the shortest path problem, the maximum flow problem, the minimum cost flow problem, and the multi-commodity flow problem. We will also consider other extensions of network flow problems.Subjects

15.082 | 15.082 | 6.855 | 6.855 | ESD.78 | ESD.78 | network models | network models | network design | network design | maximum flow algorithm | maximum flow algorithm | minimum cost flow | minimum cost flow | shortest path algorithm | shortest path algorithm | algorithm efficiency | algorithm efficiency | preflow push algorithm | preflow push algorithm | data structures | data structuresLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5503 (Analysis and Design of Algorithms). This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5503 (Analysis and Design of Algorithms).Subjects

algorithms | algorithms | efficient algorithms | efficient algorithms | sorting | sorting | search trees | search trees | heaps | heaps | hashing | hashing | divide-and-conquer | divide-and-conquer | dynamic programming | dynamic programming | amortized analysis | amortized analysis | graph algorithms | graph algorithms | shortest paths | shortest paths | network flow | network flow | computational geometry | computational geometry | number-theoretic algorithms | number-theoretic algorithms | polynomial and matrix calculations | polynomial and matrix calculations | caching | caching | parallel computing | parallel computing | SMA 5503 | SMA 5503 | 6.046 | 6.046License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace informationSubjects

autonomy | autonomy | decision | decision | decision-making | decision-making | reasoning | reasoning | optimization | optimization | autonomous | autonomous | autonomous systems | autonomous systems | decision support | decision support | algorithms | algorithms | artificial intelligence | artificial intelligence | a.i. | a.i. | operations | operations | operations research | operations research | logic | logic | deduction | deduction | heuristic search | heuristic search | constraint-based search | constraint-based search | model-based reasoning | model-based reasoning | planning | planning | execution | execution | uncertainty | uncertainty | machine learning | machine learning | linear programming | linear programming | dynamic programming | dynamic programming | integer programming | integer programming | network optimization | network optimization | decision analysis | decision analysis | decision theoretic planning | decision theoretic planning | Markov decision process | Markov decision process | scheme | scheme | propositional logic | propositional logic | constraints | constraints | Markov processes | Markov processes | computational performance | computational performance | satisfaction | satisfaction | learning algorithms | learning algorithms | system state | system state | state | state | search treees | search treees | plan spaces | plan spaces | model theory | model theory | decision trees | decision trees | function approximators | function approximators | optimization algorithms | optimization algorithms | limitations | limitations | tradeoffs | tradeoffs | search and reasoning | search and reasoning | game tree search | game tree search | local stochastic search | local stochastic search | stochastic | stochastic | genetic algorithms | genetic algorithms | constraint satisfaction | constraint satisfaction | propositional inference | propositional inference | rule-based systems | rule-based systems | rule-based | rule-based | model-based diagnosis | model-based diagnosis | neural nets | neural nets | reinforcement learning | reinforcement learning | web-based | web-based | search trees | search treesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.046J Introduction to Algorithms (MIT) 6.046J Introduction to Algorithms (MIT)

Description

This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing. This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.Subjects

algorithms | algorithms | efficient algorithms | efficient algorithms | sorting | sorting | search trees | search trees | heaps | heaps | hashing | hashing | divide-and-conquer | divide-and-conquer | dynamic programming | dynamic programming | amortized analysis | amortized analysis | graph algorithms | graph algorithms | shortest paths | shortest paths | network flow | network flow | computational geometry | computational geometry | number-theoretic algorithms | number-theoretic algorithms | polynomial and matrix calculations | polynomial and matrix calculations | caching | caching | parallel computing | parallel computing | 6.046 | 6.046 | 18.410 | 18.410License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.124J Foundations of Software Engineering (MIT) 1.124J Foundations of Software Engineering (MIT)

Description

This is a foundation subject in modern software development techniques for engineering and information technology. The design and development of component-based software (using C# and .NET) is covered; data structures and algorithms for modeling, analysis, and visualization; basic problem-solving techniques; web services; and the management and maintenance of software. Includes a treatment of topics such as sorting and searching algorithms; and numerical simulation techniques. Foundation for in-depth exploration of image processing, computational geometry, finite element methods, network methods and e-business applications. This course is a core requirement for the Information Technology M. Eng. program. This class was also offered in Course 13 (Department of Ocean Engineering) as 13.470J. This is a foundation subject in modern software development techniques for engineering and information technology. The design and development of component-based software (using C# and .NET) is covered; data structures and algorithms for modeling, analysis, and visualization; basic problem-solving techniques; web services; and the management and maintenance of software. Includes a treatment of topics such as sorting and searching algorithms; and numerical simulation techniques. Foundation for in-depth exploration of image processing, computational geometry, finite element methods, network methods and e-business applications. This course is a core requirement for the Information Technology M. Eng. program. This class was also offered in Course 13 (Department of Ocean Engineering) as 13.470J.Subjects

modern software development | modern software development | engineering and information technology | engineering and information technology | component-based software | component-based software | C# | C# | .NET | .NET | data structures | data structures | algorithms for modeling | algorithms for modeling | analysis | analysis | visualization | visualization | basic problem-solving techniques | basic problem-solving techniques | web services | web services | management and maintenance of software | management and maintenance of software | sorting | sorting | searching | searching | algorithms | algorithms | numerical simulation techniques | numerical simulation techniques | image processing | image processing | computational geometry | computational geometry | finite element methods | finite element methods | network methods | network methods | e-business applications | e-business applications | classes | classes | objects | objects | inheritance | inheritance | virtual functions | virtual functions | abstract classes | abstract classes | polymorphism | polymorphism | Java applications | Java applications | applets | applets | Abstract Windowing Toolkit | Abstract Windowing Toolkit | Graphics | Graphics | Threads | Threads | Java | Java | C++ | C++ | information technology | information technology | engineering | engineering | modeling algorithms | modeling algorithms | basic problem-solving | basic problem-solving | software management | software management | software maintenance | software maintenance | searching algorithms | searching algorithms | numerical simulation | numerical simulation | object oriented programming | object oriented programming | 13.470J | 13.470J | 1.124 | 1.124 | 2.159 | 2.159 | 13.470 | 13.470License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.852J Distributed Algorithms (MIT) 6.852J Distributed Algorithms (MIT)

Description

6.852J / 18.437J intends to: (1) provide a rigorous introduction to the most important research results in the area of distributed algorithms, and (2) prepare interested students to carry out independent research in distributed algorithms. Topics covered include: design and analysis of concurrent algorithms, emphasizing those suitable for use in distributed networks, process synchronization, allocation of computational resources, distributed consensus, distributed graph algorithms, election of a leader in a network, distributed termination, deadlock detection, concurrency control, communication, and clock synchronization. Special consideration is given to issues of efficiency and fault tolerance. Formal models and proof methods for distributed computation are also discussed. 6.852J / 18.437J intends to: (1) provide a rigorous introduction to the most important research results in the area of distributed algorithms, and (2) prepare interested students to carry out independent research in distributed algorithms. Topics covered include: design and analysis of concurrent algorithms, emphasizing those suitable for use in distributed networks, process synchronization, allocation of computational resources, distributed consensus, distributed graph algorithms, election of a leader in a network, distributed termination, deadlock detection, concurrency control, communication, and clock synchronization. Special consideration is given to issues of efficiency and fault tolerance. Formal models and proof methods for distributed computation are also discussed.Subjects

distributed algorithms | distributed algorithms | algorithm | algorithm | concurrent algorithms | concurrent algorithms | distributed networks | distributed networks | process synchronization | process synchronization | computational resources | computational resources | distributed consensus | distributed consensus | distributed graph algorithms | distributed graph algorithms | distributed termination | distributed termination | deadlock detection | deadlock detection | concurrency control | concurrency control | communication | communication | clock synchronization | clock synchronization | fault tolerance | fault tolerance | distributed computation | distributed computation | 6.852 | 6.852 | 18.437 | 18.437License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace information This course surveys a variety of reasoning, optimization, and decision-making methodologies for creating highly autonomous systems and decision support aids. The focus is on principles, algorithms, and their applications, taken from the disciplines of artificial intelligence and operations research. Reasoning paradigms include logic and deduction, heuristic and constraint-based search, model-based reasoning, planning and execution, reasoning under uncertainty, and machine learning. Optimization paradigms include linear, integer and dynamic programming. Decision-making paradigms include decision theoretic planning, and Markov decision processes. This course is offered both to undergraduate (16.410) students as a professional area undergraduate subject, in the field of aerospace informationSubjects

autonomy | autonomy | decision | decision | decision-making | decision-making | reasoning | reasoning | optimization | optimization | autonomous | autonomous | autonomous systems | autonomous systems | decision support | decision support | algorithms | algorithms | artificial intelligence | artificial intelligence | a.i. | a.i. | operations | operations | operations research | operations research | logic | logic | deduction | deduction | heuristic search | heuristic search | constraint-based search | constraint-based search | model-based reasoning | model-based reasoning | planning | planning | execution | execution | uncertainty | uncertainty | machine learning | machine learning | linear programming | linear programming | dynamic programming | dynamic programming | integer programming | integer programming | network optimization | network optimization | decision analysis | decision analysis | decision theoretic planning | decision theoretic planning | Markov decision process | Markov decision process | scheme | scheme | propositional logic | propositional logic | constraints | constraints | Markov processes | Markov processes | computational performance | computational performance | satisfaction | satisfaction | learning algorithms | learning algorithms | system state | system state | state | state | search treees | search treees | plan spaces | plan spaces | model theory | model theory | decision trees | decision trees | function approximators | function approximators | optimization algorithms | optimization algorithms | limitations | limitations | tradeoffs | tradeoffs | search and reasoning | search and reasoning | game tree search | game tree search | local stochastic search | local stochastic search | stochastic | stochastic | genetic algorithms | genetic algorithms | constraint satisfaction | constraint satisfaction | propositional inference | propositional inference | rule-based systems | rule-based systems | rule-based | rule-based | model-based diagnosis | model-based diagnosis | neural nets | neural nets | reinforcement learning | reinforcement learning | web-based | web-based | search trees | search treesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.438 Algorithms for Inference (MIT)

Description

This is a graduate-level introduction to the principles of statistical inference with probabilistic models defined using graphical representations. The material in this course constitutes a common foundation for work in machine learning, signal processing, artificial intelligence, computer vision, control, and communication. Ultimately, the subject is about teaching you contemporary approaches to, and perspectives on, problems of statistical inference.Subjects

inference | algorithm | graphical model | factor graph | markov chain | Gaussian model | loopy belief propagation | EM algorithm | statistical inference | probabilistic graphical model | Hidden Markov model | linear dynamical systems | Sum-product algorithm | junction tree algorithm | Forward-backward algorithm | Kalman filtering | smoothing | Variational method | mean-field theory | Min-sum algorithm | Viterbi algorithm | parameter estimation | learning structureLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is an introduction to discrete applied mathematics. Topics include probability, counting, linear programming, number-theoretic algorithms, sorting, data compression, and error-correcting codes. This is a Communication Intensive in the Major (CI-M) course, and thus includes a writing component. This course is an introduction to discrete applied mathematics. Topics include probability, counting, linear programming, number-theoretic algorithms, sorting, data compression, and error-correcting codes. This is a Communication Intensive in the Major (CI-M) course, and thus includes a writing component.Subjects

probability | probability | probability theory counting | probability theory counting | pigeonhole principle | pigeonhole principle | Van der Waerden's theorem | Van der Waerden's theorem | Chernoff bounds | Chernoff bounds | counting | counting | coding | coding | sampling | sampling | random sampling | random sampling | Catalan families | Catalan families | generating functions | generating functions | chord diagrams | chord diagrams | linear programming | linear programming | simplex method | simplex method | Zero-Sum matrix | Zero-Sum matrix | network flows | network flows | maximum flow problem | maximum flow problem | sorting algorithms | sorting algorithms | QUICKSORT | QUICKSORT | median finding | median finding | sorting networks | sorting networks | Batcher's algorithm | Batcher's algorithm | Euclid's algorithm | Euclid's algorithm | Chinese Remainder Theorem | Chinese Remainder Theorem | cryptography | cryptography | RSA code | RSA code | primaility testing | primaility testing | FFT | FFT | Fast Fourier Transform | Fast Fourier Transform | Shannon's coding theorems | Shannon's coding theorems | Lempel-Ziv codes | Lempel-Ziv codes | linear codes | linear codes | hamming code | hamming codeLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.435J Quantum Computation (MIT) 18.435J Quantum Computation (MIT)

Description

This course provides an introduction to the theory and practice of quantum computation. Topics covered include: physics of information processing, quantum logic, quantum algorithms including Shor's factoring algorithm and Grover's search algorithm, quantum error correction, quantum communication, and cryptography. This course provides an introduction to the theory and practice of quantum computation. Topics covered include: physics of information processing, quantum logic, quantum algorithms including Shor's factoring algorithm and Grover's search algorithm, quantum error correction, quantum communication, and cryptography.Subjects

quantum computation | quantum computation | physics of information processing | physics of information processing | quantum logic | quantum logic | quantum algorithms including Shor's factoring algorithm and Grover's search algorithm | quantum algorithms including Shor's factoring algorithm and Grover's search algorithm | quantum error correction | quantum error correction | quantum communication | quantum communication | cryptography | cryptography | 18.345 | 18.345 | 2.111 | 2.111 | ESD.79 | ESD.79License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata