Searching for astronautics : 14 results found | RSS Feed for this search

1

Earth: Fundamentals of Engineering Design (MIT) Earth: Fundamentals of Engineering Design (MIT)

Description

Student teams formulate and complete space/earth/ocean exploration-based design projects with weekly milestones. This course introduces core engineering themes, principles, and modes of thinking, and includes exercises in written and oral communication and team building. Specialized learning modules enable teams to focus on the knowledge required to complete their projects, such as machine elements, electronics, design process, visualization and communication. Examples of projects include surveying a lake for millfoil from a remote controlled aircraft, then sending out robotic harvesters to clear the invasive growth; and exploration to search for the evidence of life on a moon of Jupiter, with scientists participating through teleoperation and supervisory control of robots. Student teams formulate and complete space/earth/ocean exploration-based design projects with weekly milestones. This course introduces core engineering themes, principles, and modes of thinking, and includes exercises in written and oral communication and team building. Specialized learning modules enable teams to focus on the knowledge required to complete their projects, such as machine elements, electronics, design process, visualization and communication. Examples of projects include surveying a lake for millfoil from a remote controlled aircraft, then sending out robotic harvesters to clear the invasive growth; and exploration to search for the evidence of life on a moon of Jupiter, with scientists participating through teleoperation and supervisory control of robots.

Subjects

ROV | ROV | engineering design | engineering design | aerospace | aerospace | astronautics | astronautics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.400 Human Factors Engineering (MIT) 16.400 Human Factors Engineering (MIT)

Description

This course is designed to provide both undergraduate and graduate students with a fundamental understanding of human factors that must be taken into account in the design and engineering of complex aviation and space systems. The primary focus is the derivation of human engineering design criteria from sensory, motor, and cognitive sources to include principles of displays, controls and ergonomics, manual control, the nature of human error, basic experimental design, and human-computer interaction in supervisory control settings. Undergraduate students will demonstrate proficiency through aviation accident case presentations, quizzes, homework assignments, and hands-on projects. Graduate students will complete all the undergraduate assignments; however, they are expected to complete a res This course is designed to provide both undergraduate and graduate students with a fundamental understanding of human factors that must be taken into account in the design and engineering of complex aviation and space systems. The primary focus is the derivation of human engineering design criteria from sensory, motor, and cognitive sources to include principles of displays, controls and ergonomics, manual control, the nature of human error, basic experimental design, and human-computer interaction in supervisory control settings. Undergraduate students will demonstrate proficiency through aviation accident case presentations, quizzes, homework assignments, and hands-on projects. Graduate students will complete all the undergraduate assignments; however, they are expected to complete a res

Subjects

human factors | human factors | attention and workload | attention and workload | manual control | manual control | automation | automation | decision making | decision making | situational awareness | situational awareness | anthropometry | anthropometry | environmental ergonomics | environmental ergonomics | space physiology | space physiology | research methods | research methods | space bioastronautics | space bioastronautics | fatigue | fatigue | Circadian rhythms | Circadian rhythms | response selection | response selection | control of movement | control of movement

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.459 Bioengineering Journal Article Seminar (MIT) 16.459 Bioengineering Journal Article Seminar (MIT)

Description

Each term, the class selects a new set of professional journal articles on bioengineering topics of current research interest. Some papers are chosen because of particular content, others are selected because they illustrate important points of methodology. Each week, one student leads the discussion, evaluating the strengths, weaknesses, and importance of each paper. Subject may be repeated for credit a maximum of four terms. Letter grade given in the last term applies to all accumulated units of 16.459. Each term, the class selects a new set of professional journal articles on bioengineering topics of current research interest. Some papers are chosen because of particular content, others are selected because they illustrate important points of methodology. Each week, one student leads the discussion, evaluating the strengths, weaknesses, and importance of each paper. Subject may be repeated for credit a maximum of four terms. Letter grade given in the last term applies to all accumulated units of 16.459.

Subjects

bioastronautics | bioastronautics | human factors | human factors | human factors engineering | human factors engineering | operator performance | operator performance | automation | automation | human automation interaction | human automation interaction | performance enhancement | performance enhancement | safety design | safety design | spaceflight | spaceflight | impact of spaceflight on humans | impact of spaceflight on humans | intracranial pressure | intracranial pressure | vision change | vision change | astronaut health | astronaut health | astronaut safety | astronaut safety | fatigue | fatigue | sleep restriction | sleep restriction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.00 Introduction to Aerospace Engineering and Design (MIT) 16.00 Introduction to Aerospace Engineering and Design (MIT)

Description

The fundamental concepts, and approaches of aerospace engineering, are highlighted through lectures on aeronautics, astronautics, and design. Active learning aerospace modules make use of information technology. Student teams are immersed in a hands-on, lighter-than-air (LTA) vehicle design project, where they design, build, and fly radio-controlled LTA vehicles. The connections between theory and practice are realized in the design exercises. Required design reviews precede the LTA race competition. The performance, weight, and principal characteristics of the LTA vehicles are estimated and illustrated using physics, mathematics, and chemistry known to freshmen, the emphasis being on the application of this knowledge to aerospace engineering and design rather than on exposure to new scien The fundamental concepts, and approaches of aerospace engineering, are highlighted through lectures on aeronautics, astronautics, and design. Active learning aerospace modules make use of information technology. Student teams are immersed in a hands-on, lighter-than-air (LTA) vehicle design project, where they design, build, and fly radio-controlled LTA vehicles. The connections between theory and practice are realized in the design exercises. Required design reviews precede the LTA race competition. The performance, weight, and principal characteristics of the LTA vehicles are estimated and illustrated using physics, mathematics, and chemistry known to freshmen, the emphasis being on the application of this knowledge to aerospace engineering and design rather than on exposure to new scien

Subjects

aerospace engineering | | aerospace engineering | | aerospace design | | aerospace design | | aeronautics | | aeronautics | | astronautics | | astronautics | | lighter-than-air (LTA) vehicle design | | lighter-than-air (LTA) vehicle design | | physics | | physics | | mathematics | | mathematics | | chemistry | chemistry | journey to mars | journey to mars | challenger | challenger

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Mars Climate Orbiter Mars Climate Orbiter

Description

Subjects

colorado | colorado | denver | denver | malinspacesciencesystems | malinspacesciencesystems | marssuveyor98climateorbiter | marssuveyor98climateorbiter | lockheedmartinastronautics | lockheedmartinastronautics

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Atlas Collection Image Atlas Collection Image

Description

Subjects

atlas | atlas | atlasrocket | atlasrocket | spaceprogram | spaceprogram | nasa | nasa | spaceprogramatlasatlas | spaceprogramatlasatlas | rocketspace | rocketspace | explorationastronauticslaunch | explorationastronauticslaunch | site | site | history | history | atlas21f | atlas21f

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Atlas Collection Image Atlas Collection Image

Description

Subjects

atlas215d | atlas215d | atlasrocket | atlasrocket | spaceprogram | spaceprogram | nasa | nasa | nasaspaceprogram | nasaspaceprogram | astronauticshistory | astronauticshistory | spaceexploration | spaceexploration | rocket | rocket | spaceship | spaceship

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Atlas Collection Image Atlas Collection Image

Description

Subjects

atlas14f | atlas14f | atlas | atlas | atlasrocket | atlasrocket | convairgeneraldynamics | convairgeneraldynamics | spaceprogram | spaceprogram | nasa | nasa | nasaspaceprogram | nasaspaceprogram | astronauticshistory | astronauticshistory | spaceexploration | spaceexploration | rocket | rocket | spaceship | spaceship

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Atlas Collection Image Atlas Collection Image

Description

Subjects

atlas13f | atlas13f | atlas | atlas | atlasrocket | atlasrocket | convairgeneraldynamics | convairgeneraldynamics | spaceprogram | spaceprogram | nasa | nasa | nasaspaceprogram | nasaspaceprogram | astronauticshistory | astronauticshistory | spaceexploration | spaceexploration | rocket | rocket | spaceship | spaceship

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Atlas Collection Image Atlas Collection Image

Description

Subjects

2001atlasav001 | 2001atlasav001 | atlas | atlas | vintage | vintage | atlasrocket | atlasrocket | convairgeneraldynamics | convairgeneraldynamics | spaceprogram | spaceprogram | nasa | nasa | nasaspaceprogram | nasaspaceprogram | astronauticshistory | astronauticshistory | spaceexploration | spaceexploration | rocket | rocket | spaceship | spaceship

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=49487266@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Earth: Fundamentals of Engineering Design (MIT)

Description

Student teams formulate and complete space/earth/ocean exploration-based design projects with weekly milestones. This course introduces core engineering themes, principles, and modes of thinking, and includes exercises in written and oral communication and team building. Specialized learning modules enable teams to focus on the knowledge required to complete their projects, such as machine elements, electronics, design process, visualization and communication. Examples of projects include surveying a lake for millfoil from a remote controlled aircraft, then sending out robotic harvesters to clear the invasive growth; and exploration to search for the evidence of life on a moon of Jupiter, with scientists participating through teleoperation and supervisory control of robots.

Subjects

ROV | engineering design | aerospace | astronautics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.400 Human Factors Engineering (MIT)

Description

This course is designed to provide both undergraduate and graduate students with a fundamental understanding of human factors that must be taken into account in the design and engineering of complex aviation and space systems. The primary focus is the derivation of human engineering design criteria from sensory, motor, and cognitive sources to include principles of displays, controls and ergonomics, manual control, the nature of human error, basic experimental design, and human-computer interaction in supervisory control settings. Undergraduate students will demonstrate proficiency through aviation accident case presentations, quizzes, homework assignments, and hands-on projects. Graduate students will complete all the undergraduate assignments; however, they are expected to complete a res

Subjects

human factors | attention and workload | manual control | automation | decision making | situational awareness | anthropometry | environmental ergonomics | space physiology | research methods | space bioastronautics | fatigue | Circadian rhythms | response selection | control of movement

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.459 Bioengineering Journal Article Seminar (MIT)

Description

Each term, the class selects a new set of professional journal articles on bioengineering topics of current research interest. Some papers are chosen because of particular content, others are selected because they illustrate important points of methodology. Each week, one student leads the discussion, evaluating the strengths, weaknesses, and importance of each paper. Subject may be repeated for credit a maximum of four terms. Letter grade given in the last term applies to all accumulated units of 16.459.

Subjects

bioastronautics | human factors | human factors engineering | operator performance | automation | human automation interaction | performance enhancement | safety design | spaceflight | impact of spaceflight on humans | intracranial pressure | vision change | astronaut health | astronaut safety | fatigue | sleep restriction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.00 Introduction to Aerospace Engineering and Design (MIT)

Description

The fundamental concepts, and approaches of aerospace engineering, are highlighted through lectures on aeronautics, astronautics, and design. Active learning aerospace modules make use of information technology. Student teams are immersed in a hands-on, lighter-than-air (LTA) vehicle design project, where they design, build, and fly radio-controlled LTA vehicles. The connections between theory and practice are realized in the design exercises. Required design reviews precede the LTA race competition. The performance, weight, and principal characteristics of the LTA vehicles are estimated and illustrated using physics, mathematics, and chemistry known to freshmen, the emphasis being on the application of this knowledge to aerospace engineering and design rather than on exposure to new scien

Subjects

aerospace engineering | | aerospace design | | aeronautics | | astronautics | | lighter-than-air (LTA) vehicle design | | physics | | mathematics | | chemistry | journey to mars | challenger

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata