Searching for astrophysics : 28 results found | RSS Feed for this search

1

8.701 Introduction to Nuclear and Particle Physics (MIT) 8.701 Introduction to Nuclear and Particle Physics (MIT)

Description

The phenomenology and experimental foundations of particle and nuclear physics are explored in this course. Emphasis is on the fundamental forces and particles, as well as composites. The phenomenology and experimental foundations of particle and nuclear physics are explored in this course. Emphasis is on the fundamental forces and particles, as well as composites.

Subjects

QED | QED | Quantum ElectroDynamics | Quantum ElectroDynamics | QFD | QFD | Quantum FlavorDynamics | Quantum FlavorDynamics | QCD | QCD | Quantum ChromoDynamics | Quantum ChromoDynamics | Relativistic Kinematics | Relativistic Kinematics | Accelerators | Accelerators | Detectors | Detectors | Quark Model | Quark Model | Lepton-Nucleon scattering | Lepton-Nucleon scattering | QFT | QFT | Quantum Field Theory | Quantum Field Theory | nuclear physics | nuclear physics | nuclear force | nuclear force | Relativistic heavy-ion physics | Relativistic heavy-ion physics | Particle astrophysics | Particle astrophysics | nuclear astrophysics | nuclear astrophysics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction to Plasma Physics I (MIT) 22.611J Introduction to Plasma Physics I (MIT)

Description

The plasma state dominates the visible universe, and is important in fields as diverse as Astrophysics and Controlled Fusion. Plasma is often referred to as "the fourth state of matter." This course introduces the study of the nature and behavior of plasma. A variety of models to describe plasma behavior are presented. The plasma state dominates the visible universe, and is important in fields as diverse as Astrophysics and Controlled Fusion. Plasma is often referred to as "the fourth state of matter." This course introduces the study of the nature and behavior of plasma. A variety of models to describe plasma behavior are presented.

Subjects

plasma phenomena | plasma phenomena | energy generation | energy generation | controlled thermonuclear fusion | controlled thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | charged particles | charged particles | magnetic fields | magnetic fields | plasma confinement schemes | plasma confinement schemes | MHD models | MHD models | simple equilibrium | simple equilibrium | stability analysis | stability analysis | Two-fluid hydrodynamic plasma models | Two-fluid hydrodynamic plasma models | wave propagation | wave propagation | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction To Plasma Physics I (MIT) 22.611J Introduction To Plasma Physics I (MIT)

Description

Introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics. Basic plasma properties and collective behavior. Coulomb collisions and transport processes. Motion of charged particles in magnetic fields; plasma confinement schemes. MHD models; simple equilibrium and stability analysis. Two-fluid hydrodynamic plasma models; wave propagation in a magnetic field.Introduces kinetic theory; Vlasov plasma model; electron plasma waves and Landau damping; ion-acoustic waves; streaming instabilities. A subject description tailored to fit the background and interests of the attending students distributed shortly before and at the beginning of the subject. Introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics. Basic plasma properties and collective behavior. Coulomb collisions and transport processes. Motion of charged particles in magnetic fields; plasma confinement schemes. MHD models; simple equilibrium and stability analysis. Two-fluid hydrodynamic plasma models; wave propagation in a magnetic field.Introduces kinetic theory; Vlasov plasma model; electron plasma waves and Landau damping; ion-acoustic waves; streaming instabilities. A subject description tailored to fit the background and interests of the attending students distributed shortly before and at the beginning of the subject.

Subjects

plasma phenomena | plasma phenomena | energy generation | energy generation | thermonuclear fusion | thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | plasma confinement schemes | | plasma confinement schemes | | MHD models | MHD models | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities | 22.611 | 22.611 | 6.651 | 6.651 | 8.613 | 8.613

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT) II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring. The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs. Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring. The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subjects

Junior Lab | Junior Lab | experimental | experimental | atomic | atomic | nuclear | nuclear | physics | physics | optics | optics | photoelectric effect | photoelectric effect | poisson | poisson | statistics | statistics | electromagnetic pulse | electromagnetic pulse | compton scattering | compton scattering | Franck-Hertz experiment | Franck-Hertz experiment | relativistic dynamics | relativistic dynamics | nuclear magnetic resonance | nuclear magnetic resonance | spin echoes | spin echoes | cosmic-ray muons | cosmic-ray muons | Rutherford Scattering | Rutherford Scattering | emission spectra | emission spectra | neutron physics | neutron physics | Johnson noise | Johnson noise | shot noise | shot noise | quantum mechanics | quantum mechanics | alpha decay | alpha decay | radio astrophysics | radio astrophysics | Zeeman effect | Zeeman effect | rubidium | rubidium | M?ssbauer | M?ssbauer | spectroscopy | spectroscopy | X-Ray physics | X-Ray physics | superconductivity | superconductivity | Doppler-free | Doppler-free | laser | laser

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction to Plasma Physics I (MIT) 22.611J Introduction to Plasma Physics I (MIT)

Description

In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne

Subjects

plasma phenomena | plasma phenomena | energy generation | energy generation | controlled thermonuclear fusion | controlled thermonuclear fusion | astrophysics | astrophysics | Coulomb collisions | Coulomb collisions | transport processes | transport processes | charged particles | charged particles | magnetic fields | magnetic fields | plasma confinement schemes | plasma confinement schemes | MHD models | MHD models | simple equilibrium | simple equilibrium | stability analysis | stability analysis | Two-fluid hydrodynamic plasma models | Two-fluid hydrodynamic plasma models | wave propagation | wave propagation | kinetic theory | kinetic theory | Vlasov plasma model | Vlasov plasma model | electron plasma waves | electron plasma waves | Landau damping | Landau damping | ion-acoustic waves | ion-acoustic waves | streaming instabilities | streaming instabilities | fourth state of matter | fourth state of matter | plasma state | plasma state | visible universe | visible universe | economics | economics | plasmas | plasmas | motion of charged particles | motion of charged particles | two-fluid hydrodynamic plasma models | two-fluid hydrodynamic plasma models | Debye Shielding | Debye Shielding | collective effects | collective effects | charged particle motion | charged particle motion | EM Fields | EM Fields | cross-sections | cross-sections | relaxation | relaxation | fluid plasma descriptions | fluid plasma descriptions | MHD equilibrium | MHD equilibrium | MHD dynamics | MHD dynamics | dynamics in two-fluid plasmas | dynamics in two-fluid plasmas | cold plasma waves | cold plasma waves | magnetic field | magnetic field | microscopic to fluid plasma descriptions | microscopic to fluid plasma descriptions | Vlasov-Maxwell kinetic theory.linear Landau growth | Vlasov-Maxwell kinetic theory.linear Landau growth | kinetic description of waves | kinetic description of waves | instabilities | instabilities | Vlasov-Maxwell kinetic theory | Vlasov-Maxwell kinetic theory | linear Landau growth | linear Landau growth | 22.611 | 22.611 | 6.651 | 6.651 | 8.613 | 8.613

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models. Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402 | plusars | plusars | galaxies | galaxies | normal and active galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Fourier Telescope Fourier Telescope

Description

Subjects

astronomy | astronomy | astrophysics | astrophysics | fouriertelescope | fouriertelescope

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.901 Astrophysics I (MIT) 8.901 Astrophysics I (MIT)

Description

This course provides a graduate-level introduction to stellar astrophysics. It covers a variety of topics, ranging from stellar structure and evolution to galactic dynamics and dark matter. This course provides a graduate-level introduction to stellar astrophysics. It covers a variety of topics, ranging from stellar structure and evolution to galactic dynamics and dark matter.

Subjects

Historical astronomy | Historical astronomy | astronomical instrumentation | astronomical instrumentation | Stars: spectra | Stars: spectra | classification | classification | stellar structure equations | stellar structure equations | stellar evolution | stellar evolution | stellar oscillations | stellar oscillations | degenerate and collapsed stars | degenerate and collapsed stars | radio pulsars | radio pulsars | interacting binary systems | interacting binary systems | accretion disks | accretion disks | x-ray sources | x-ray sources | gravitational lenses | gravitational lenses | dark matter | dark matter | interstellar medium: HII regions | interstellar medium: HII regions | supernova remnants | supernova remnants | molecular clouds | molecular clouds | dust | dust | radiative transfer | radiative transfer | Jeans' mass | Jeans' mass | star formation | star formation | high-energy astrophysics | high-energy astrophysics | Compton scattering | Compton scattering | bremsstrahlung | bremsstrahlung | synchrotron radiation | synchrotron radiation | cosmic rays | cosmic rays | Galactic stellar distributions | Galactic stellar distributions | Oort constants | Oort constants | Oort limit | Oort limit | globular clusters. | globular clusters. | globular clusters | globular clusters

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Astrophysics (MIT) Astrophysics (MIT)

Description

Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced

Subjects

black hole | black hole | general relativity | general relativity | astrophysics | astrophysics | cosmology | cosmology | Energy and momentum in flat spacetime | Energy and momentum in flat spacetime | the metric | the metric | curvature of spacetime near rotating and nonrotating centers of attraction | curvature of spacetime near rotating and nonrotating centers of attraction | trajectories and orbits of particles and light | trajectories and orbits of particles and light | elementary models of the Cosmos | elementary models of the Cosmos | Global Positioning System | Global Positioning System | solar system tests of relativity | solar system tests of relativity | descending into a black hole | descending into a black hole | gravitational lensing | gravitational lensing | gravitational waves | gravitational waves | Gravity Probe B | Gravity Probe B | more advanced models of the Cosmos | more advanced models of the Cosmos | spacetime curvature | spacetime curvature | rotating centers of attraction | rotating centers of attraction | nonrotating centers of attraction | nonrotating centers of attraction | event horizon | event horizon | energy | energy | momentum | momentum | flat spacetime | flat spacetime | metric | metric | trajectories | trajectories | orbits | orbits | particles | particles | light | light | elementary | elementary | models | models | cosmos | cosmos | spacetime | spacetime | curvature | curvature | flat | flat | GPS | GPS | gravitational | gravitational | lensing | lensing | waves | waves | rotating | rotating | nonrotating | nonrotating | centers | centers | attraction | attraction | solar system | solar system | tests | tests | relativity | relativity | general | general | advanced | advanced

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.701 Introduction to Nuclear and Particle Physics (MIT)

Description

The phenomenology and experimental foundations of particle and nuclear physics are explored in this course. Emphasis is on the fundamental forces and particles, as well as composites.

Subjects

QED | Quantum ElectroDynamics | QFD | Quantum FlavorDynamics | QCD | Quantum ChromoDynamics | Relativistic Kinematics | Accelerators | Detectors | Quark Model | Lepton-Nucleon scattering | QFT | Quantum Field Theory | nuclear physics | nuclear force | Relativistic heavy-ion physics | Particle astrophysics | nuclear astrophysics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT) II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs. Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subjects

Junior Lab | Junior Lab | experimental | experimental | atomic | atomic | nuclear | nuclear | physics | physics | optics | optics | photoelectric effect | photoelectric effect | poisson | poisson | statistics | statistics | electromagnetic pulse | electromagnetic pulse | compton scattering | compton scattering | Franck-Hertz experiment | Franck-Hertz experiment | relativistic dynamics | relativistic dynamics | nuclear magnetic resonance | nuclear magnetic resonance | spin echoes | spin echoes | cosmic-ray muons | cosmic-ray muons | Rutherford Scattering | Rutherford Scattering | emission spectra | emission spectra | neutron physics | neutron physics | Johnson noise | Johnson noise | shot noise | shot noise | quantum mechanics | quantum mechanics | alpha decay | alpha decay | radio astrophysics | radio astrophysics | Zeeman effect | Zeeman effect | rubidium | rubidium | M?ssbauer | M?ssbauer | spectroscopy | spectroscopy | X-Ray physics | X-Ray physics | superconductivity | superconductivity | Doppler-free | Doppler-free | laser | laser

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.89J Space Systems Engineering (MIT) 16.89J Space Systems Engineering (MIT)

Description

In 16.89 / ESD.352 the students will first be asked to understand the key challenges in designing ground and space telescopes, the stakeholder structure and value flows, and the particular pros and cons of the proposed project. The first half of the class will concentrate on performing a thorough architectural analysis of the key astrophysical, engineering, human, budgetary and broader policy issues that are involved in this decision. This will require the students to carry out a qualitative and quantitative conceptual study during the first half of the semester and recommend a small set of promising architectures for further study at the Preliminary Design Review (PDR).Both lunar surface telescopes as well as orbital locations should be considered.The second half of the class will then pi In 16.89 / ESD.352 the students will first be asked to understand the key challenges in designing ground and space telescopes, the stakeholder structure and value flows, and the particular pros and cons of the proposed project. The first half of the class will concentrate on performing a thorough architectural analysis of the key astrophysical, engineering, human, budgetary and broader policy issues that are involved in this decision. This will require the students to carry out a qualitative and quantitative conceptual study during the first half of the semester and recommend a small set of promising architectures for further study at the Preliminary Design Review (PDR).Both lunar surface telescopes as well as orbital locations should be considered.The second half of the class will then pi

Subjects

16.89 | 16.89 | ESD.352 | ESD.352 | System Requirements Review | System Requirements Review | Preliminary Design Review | Preliminary Design Review | Critical Design Review | Critical Design Review | Conceptual Design Phase | Conceptual Design Phase | Preliminary Design Phase | Preliminary Design Phase | Detailed Design Phase | Detailed Design Phase | astrophysics | astrophysics | Stakeholder Analysis | Stakeholder Analysis | System Architecture | System Architecture | Radio Astronomy | Radio Astronomy | Space Telescope | Space Telescope | Interferometry | Interferometry | Lunar Logistics | Lunar Logistics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction to Plasma Physics I (MIT)

Description

In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne

Subjects

plasma phenomena | energy generation | controlled thermonuclear fusion | astrophysics | Coulomb collisions | transport processes | charged particles | magnetic fields | plasma confinement schemes | MHD models | simple equilibrium | stability analysis | Two-fluid hydrodynamic plasma models | wave propagation | kinetic theory | Vlasov plasma model | electron plasma waves | Landau damping | ion-acoustic waves | streaming instabilities | fourth state of matter | plasma state | visible universe | economics | plasmas | motion of charged particles | two-fluid hydrodynamic plasma models | Debye Shielding | collective effects | charged particle motion | EM Fields | cross-sections | relaxation | fluid plasma descriptions | MHD equilibrium | MHD dynamics | dynamics in two-fluid plasmas | cold plasma waves | magnetic field | microscopic to fluid plasma descriptions | Vlasov-Maxwell kinetic theory.linear Landau growth | kinetic description of waves | instabilities | Vlasov-Maxwell kinetic theory | linear Landau growth | 22.611 | 6.651 | 8.613

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subjects

Junior Lab | experimental | atomic | nuclear | physics | optics | photoelectric effect | poisson | statistics | electromagnetic pulse | compton scattering | Franck-Hertz experiment | relativistic dynamics | nuclear magnetic resonance | spin echoes | cosmic-ray muons | Rutherford Scattering | emission spectra | neutron physics | Johnson noise | shot noise | quantum mechanics | alpha decay | radio astrophysics | Zeeman effect | rubidium | M?ssbauer | spectroscopy | X-Ray physics | superconductivity | Doppler-free | laser

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction to Plasma Physics I (MIT)

Description

In this course, students will learn about plasmas, the fourth state of matter. The plasma state dominates the visible universe, and is of increasing economic importance. Plasmas behave in lots of interesting and sometimes unexpected ways. The course is intended only as a first plasma physics course, but includes critical concepts needed for a foundation for further study. A solid undergraduate background in classical physics, electromagnetic theory including Maxwell's equations, and mathematical familiarity with partial differential equations and complex analysis are prerequisites. The course introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics, coulomb collisions and transport processes, motion of charged particles in magne

Subjects

plasma phenomena | energy generation | controlled thermonuclear fusion | astrophysics | Coulomb collisions | transport processes | charged particles | magnetic fields | plasma confinement schemes | MHD models | simple equilibrium | stability analysis | Two-fluid hydrodynamic plasma models | wave propagation | kinetic theory | Vlasov plasma model | electron plasma waves | Landau damping | ion-acoustic waves | streaming instabilities | fourth state of matter | plasma state | visible universe | economics | plasmas | motion of charged particles | two-fluid hydrodynamic plasma models | Debye Shielding | collective effects | charged particle motion | EM Fields | cross-sections | relaxation | fluid plasma descriptions | MHD equilibrium | MHD dynamics | dynamics in two-fluid plasmas | cold plasma waves | magnetic field | microscopic to fluid plasma descriptions | Vlasov-Maxwell kinetic theory.linear Landau growth | kinetic description of waves | instabilities | Vlasov-Maxwell kinetic theory | linear Landau growth | 22.611 | 6.651 | 8.613

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction To Plasma Physics I (MIT)

Description

Introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics. Basic plasma properties and collective behavior. Coulomb collisions and transport processes. Motion of charged particles in magnetic fields; plasma confinement schemes. MHD models; simple equilibrium and stability analysis. Two-fluid hydrodynamic plasma models; wave propagation in a magnetic field.Introduces kinetic theory; Vlasov plasma model; electron plasma waves and Landau damping; ion-acoustic waves; streaming instabilities. A subject description tailored to fit the background and interests of the attending students distributed shortly before and at the beginning of the subject.

Subjects

plasma phenomena | energy generation | thermonuclear fusion | astrophysics | Coulomb collisions | transport processes | plasma confinement schemes | | MHD models | kinetic theory | Vlasov plasma model | electron plasma waves | Landau damping | ion-acoustic waves | streaming instabilities | 22.611 | 6.651 | 8.613

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402 | plusars | galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring. The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subjects

Junior Lab | experimental | atomic | nuclear | physics | optics | photoelectric effect | poisson | statistics | electromagnetic pulse | compton scattering | Franck-Hertz experiment | relativistic dynamics | nuclear magnetic resonance | spin echoes | cosmic-ray muons | Rutherford Scattering | emission spectra | neutron physics | Johnson noise | shot noise | quantum mechanics | alpha decay | radio astrophysics | Zeeman effect | rubidium | M?ssbauer | spectroscopy | X-Ray physics | superconductivity | Doppler-free | laser

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Interdisciplinary Science Habitable Worlds Student Document

Description

Habitable Worlds examines one of the greatest questions mankind has ever asked: are we alone? This module has been designed to aid you in your search for answers, but bear in mind no one person you encounter can be considered an expert in the whole field. You will need to research from multiple sources and may well end up disagreeing with one another on certain issues.

Subjects

sfsoer | ukoer | astronomy | physics | astrophysics | biology | astrobiology | problem-based learning | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402 | plusars | galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.901 Astrophysics I (MIT)

Description

This course provides a graduate-level introduction to stellar astrophysics. It covers a variety of topics, ranging from stellar structure and evolution to galactic dynamics and dark matter.

Subjects

Historical astronomy | astronomical instrumentation | Stars: spectra | classification | stellar structure equations | stellar evolution | stellar oscillations | degenerate and collapsed stars | radio pulsars | interacting binary systems | accretion disks | x-ray sources | gravitational lenses | dark matter | interstellar medium: HII regions | supernova remnants | molecular clouds | dust | radiative transfer | Jeans' mass | star formation | high-energy astrophysics | Compton scattering | bremsstrahlung | synchrotron radiation | cosmic rays | Galactic stellar distributions | Oort constants | Oort limit | globular clusters. | globular clusters

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.611J Introduction to Plasma Physics I (MIT)

Description

The plasma state dominates the visible universe, and is important in fields as diverse as Astrophysics and Controlled Fusion. Plasma is often referred to as "the fourth state of matter." This course introduces the study of the nature and behavior of plasma. A variety of models to describe plasma behavior are presented.

Subjects

plasma phenomena | energy generation | controlled thermonuclear fusion | astrophysics | Coulomb collisions | transport processes | charged particles | magnetic fields | plasma confinement schemes | MHD models | simple equilibrium | stability analysis | Two-fluid hydrodynamic plasma models | wave propagation | kinetic theory | Vlasov plasma model | electron plasma waves | Landau damping | ion-acoustic waves | streaming instabilities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Physics

Description

Notre Dame OpenCourseware (OCW) offers free online educational resources for courses in the Department of Physics. Undergraduate physics majors are trained to use the most modern equipment, learn about the most current and exciting topics for research, and, most of all, learn to be problem solvers. As the "liberal arts" of the sciences, physics is a training ground for the mind which opens many avenues.

Subjects

nuclear physics | atomic physics | biophysics | ondensed matter | course | elementary particle physics | free | online | astrophysics | physics | OCW

License

http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://ocw.nd.edu/rss

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Astrophysics (MIT)

Description

Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced models of the Cosmos.

Subjects

black hole | general relativity | astrophysics | cosmology | Energy and momentum in flat spacetime | the metric | curvature of spacetime near rotating and nonrotating centers of attraction | trajectories and orbits of particles and light | elementary models of the Cosmos | Global Positioning System | solar system tests of relativity | descending into a black hole | gravitational lensing | gravitational waves | Gravity Probe B | more advanced models of the Cosmos | spacetime curvature | rotating centers of attraction | nonrotating centers of attraction | event horizon | energy | momentum | flat spacetime | metric | trajectories | orbits | particles | light | elementary | models | cosmos | spacetime | curvature | flat | GPS | gravitational | lensing | waves | rotating | nonrotating | centers | attraction | solar system | tests | relativity | general | advanced

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata