Searching for atomic : 138 results found | RSS Feed for this search

1 2 3 4 5 6

3.091 Introduction to Solid State Chemistry (MIT) 3.091 Introduction to Solid State Chemistry (MIT)

Description

This course explores the basic principles of chemistry and their application to engineering systems. It deals with the relationship between electronic structure, chemical bonding, and atomic order. It also investigates the characterization of atomic arrangements in crystalline and amorphous solids: metals, ceramics, semiconductors, and polymers (including proteins). Topics covered include organic chemistry, solution chemistry, acid-base equilibria, electrochemistry, biochemistry, chemical kinetics, diffusion, and phase diagrams. Examples are drawn from industrial practice (including the environmental impact of chemical processes), from energy generation and storage, e.g., batteries and fuel cells, and from emerging technologies, e.g., photonic and biomedical devices. This course explores the basic principles of chemistry and their application to engineering systems. It deals with the relationship between electronic structure, chemical bonding, and atomic order. It also investigates the characterization of atomic arrangements in crystalline and amorphous solids: metals, ceramics, semiconductors, and polymers (including proteins). Topics covered include organic chemistry, solution chemistry, acid-base equilibria, electrochemistry, biochemistry, chemical kinetics, diffusion, and phase diagrams. Examples are drawn from industrial practice (including the environmental impact of chemical processes), from energy generation and storage, e.g., batteries and fuel cells, and from emerging technologies, e.g., photonic and biomedical devices.

Subjects

solid state chemistry; electronic structure; chemical bonding; crystal structure; atomic and molecular arrangements; crystalline and amorphous solids | solid state chemistry; electronic structure; chemical bonding; crystal structure; atomic and molecular arrangements; crystalline and amorphous solids | solid state chemistry | solid state chemistry | electronic structure | electronic structure | chemical bonding | chemical bonding | crystal structure | crystal structure | atomic and molecular arrangements | atomic and molecular arrangements | crystalline and amorphous solids | crystalline and amorphous solids

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.436 Cold War Science (MIT) STS.436 Cold War Science (MIT)

Description

The history and legacy of the Cold War on science is examined in a seminar setting for this course, looking predominantly at examples in the United States. Topics range from exploring scientists' new political roles after World War II as elite policy-makers in the nuclear age to their victimization by domestic anti-Communism. The course next examines the changing institutions in which the physical, biological, and social sciences were conducted during the postwar decades, investigating the links between institutions and epistemology. The course closes by considering the place of science in the post-Cold-War era. The history and legacy of the Cold War on science is examined in a seminar setting for this course, looking predominantly at examples in the United States. Topics range from exploring scientists' new political roles after World War II as elite policy-makers in the nuclear age to their victimization by domestic anti-Communism. The course next examines the changing institutions in which the physical, biological, and social sciences were conducted during the postwar decades, investigating the links between institutions and epistemology. The course closes by considering the place of science in the post-Cold-War era.

Subjects

cold war | cold war | history of science | history of science | nuclear age | nuclear age | post-cold-war era | post-cold-war era | atomic bomb | atomic bomb | nuclear weapons | nuclear weapons | atom bomb | atom bomb | hydrogen bomb | hydrogen bomb | atomic energy | atomic energy | McCarthyism | McCarthyism | espionage | espionage | anti-communism | anti-communism | soviet union | soviet union | cold war america | cold war america | american science | american science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.091SC Introduction to Solid State Chemistry (MIT) 3.091SC Introduction to Solid State Chemistry (MIT)

Description

Introduction to Solid State Chemistry is a first-year single-semester college course on the principles of chemistry. This unique and popular course satisfies MIT's general chemistry degree requirement, with an emphasis on solid-state materials and their application to engineering systems. Introduction to Solid State Chemistry is a first-year single-semester college course on the principles of chemistry. This unique and popular course satisfies MIT's general chemistry degree requirement, with an emphasis on solid-state materials and their application to engineering systems.

Subjects

solid state chemistry | solid state chemistry | atomic structure | atomic structure | atomic bonding | atomic bonding | crystal structure | crystal structure | crystalline solid | crystalline solid | periodic table | periodic table | electron shell | electron shell | x-ray spectroscopy | x-ray spectroscopy | amorphous solid | amorphous solid | reaction kinetics | reaction kinetics | aqueous solution | aqueous solution | solid solution | solid solution | biomaterial | biomaterial | polymer | polymer | semiconductor | semiconductor | phase diagram | phase diagram | material processing | material processing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.052 Nanomechanics of Materials and Biomaterials (MIT) 3.052 Nanomechanics of Materials and Biomaterials (MIT)

Description

This course focuses on the latest scientific developments and discoveries in the field of nanomechanics, the study of forces and motion on extremely tiny (10-9 m) areas of synthetic and biological materials and structures. At this level, mechanical properties are intimately related to chemistry, physics, and quantum mechanics. Most lectures will consist of a theoretical component that will then be compared to recent experimental data (case studies) in the literature. The course begins with a series of introductory lectures that describes the normal and lateral forces acting at the atomic scale. The following discussions include experimental techniques in high resolution force spectroscopy, atomistic aspects of adhesion, nanoindentation, molecular details of fracture, chemical force microsc This course focuses on the latest scientific developments and discoveries in the field of nanomechanics, the study of forces and motion on extremely tiny (10-9 m) areas of synthetic and biological materials and structures. At this level, mechanical properties are intimately related to chemistry, physics, and quantum mechanics. Most lectures will consist of a theoretical component that will then be compared to recent experimental data (case studies) in the literature. The course begins with a series of introductory lectures that describes the normal and lateral forces acting at the atomic scale. The following discussions include experimental techniques in high resolution force spectroscopy, atomistic aspects of adhesion, nanoindentation, molecular details of fracture, chemical force microsc

Subjects

biology | biology | biological engineering | biological engineering | cells | cells | AFM | AFM | atomic force microscope | atomic force microscope | nanoindentation | nanoindentation | gecko | gecko | malaria | malaria | nanotube | nanotube | collagen | collagen | polymer | polymer | seashell | seashell | biomimetics | biomimetics | molecule | molecule | atomic | atomic | bonding | bonding | adhesion | adhesion | quantum mechanics | quantum mechanics | physics | physics | chemistry | chemistry | protein | protein | DNA | DNA | bone | bone | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.436 Cold War Science (MIT) STS.436 Cold War Science (MIT)

Description

This seminar examines the history and legacy of the Cold War on American science. It explores scientist's new political roles after World War II, ranging from elite policy makers in the nuclear age to victims of domestic anti Communism. It also examines the changing institutions in which the physical sciences and social sciences were conducted during the postwar decades, investigating possible epistemic effects on forms of knowledge. The subject closes by considering the place of science in the post-Cold War era. This seminar examines the history and legacy of the Cold War on American science. It explores scientist's new political roles after World War II, ranging from elite policy makers in the nuclear age to victims of domestic anti Communism. It also examines the changing institutions in which the physical sciences and social sciences were conducted during the postwar decades, investigating possible epistemic effects on forms of knowledge. The subject closes by considering the place of science in the post-Cold War era.

Subjects

cold war | cold war | history of science | history of science | nuclear age | nuclear age | post-cold-war era | post-cold-war era | atomic bomb | atomic bomb | nuclear weapons | nuclear weapons | atom bomb | atom bomb | hydrogen bomb | hydrogen bomb | atomic energy | atomic energy | McCarthyism | McCarthyism | espionage | espionage | anti-communism | anti-communism | spying | spying | soviet union | soviet union | american science | american science | HUAC | HUAC | oppenheimer | oppenheimer | arms race | arms race | disarmament | disarmament | Sputnik | Sputnik | iron curtain | iron curtain | space race | space race | globalization | globalization | capitalism | capitalism | academic freedom | academic freedom | CIA | CIA | National Security Agency | National Security Agency | NSA | NSA | military-industrial complex | military-industrial complex | quantum physics | quantum physics | physics | physics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-STS.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.422 Atomic and Optical Physics II (MIT) 8.422 Atomic and Optical Physics II (MIT)

Description

This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light, multi-photon processes, coherence, trapping and cooling, atomic interactions, and experimental methods. This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light, multi-photon processes, coherence, trapping and cooling, atomic interactions, and experimental methods.

Subjects

atomic | atomic | optical physics | optical physics | Non-classical states of light | Non-classical states of light | squeezed states | squeezed states | multi-photon processes | multi-photon processes | Raman scattering | Raman scattering | coherence | coherence | level crossings | level crossings | quantum beats | quantum beats | double resonance | double resonance | superradiance | superradiance | trapping and cooling | trapping and cooling | light forces | light forces | laser cooling | laser cooling | atom optics | atom optics | spectroscopy of trapped atoms and ions | spectroscopy of trapped atoms and ions | atomic interactions | atomic interactions | classical collisions | classical collisions | quantum scattering theory | quantum scattering theory | ultracold collisions | ultracold collisions | experimental methods | experimental methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Analytical Science

Description

Wales undergraduate level and as a CPD training resource

Subjects

ukoer | sfsoer | oer | open educational resources | metadata | analytical science | cpd training resource | analytical chemistry | measurement science | analytical process model | skills for analytical science | skills for analytical chemistry | analytical sample preparation | separation and concentration of analytes | units of measurement | volumetric techniques | gravimetric techniques | calibration methods | standard-addition | method of internal-standards | statistical analysis of data | measurement uncertainty | chromatographic methods | thin layer chromatography | gc | gas chromatography | hplc | high-performance liquid chromatography | capillary electrophoresis | potentiometry | ion-selective electrodes | amperometry | coulometry | plated film thickness | electromagnetic spectrum | electronic transitions | vibrational energy | comparison of spectroscopic techniques | fluorescence spectroscopy | mid infra-red spectroscopy | near infra-red spectroscopy | aas | atomic absorption spectroscopy | atomic emission spectroscopy | inductively coupled plasme emission spectroscopy | icpms | icpes | atomic fluorescence spectroscopy | comparison of elemental analysis techniques | principles of mass spectroscopy | electron impact mass spectroscopy | chemical ionisation mass spectroscopy | quadrupole mass spectroscopy | time-of-flight mass analysers | ion-trap mass analysers | off-line sampling systems | at-line sampling systems | on-line sampling systems | in-line sampling systems | performance characteristics of analytical techniques | flow injection analysis | fia | process gc | process ir | process ms | process uv/visible | quality management | quality assurance | qa | vam principles | quality control | qc | analytical method validation | analytical method performance characteristics | sampling of solids | liquids and gases | measurement of ph | karl fischer titration | uv/visible spectroscopy | beer's law | beer-lambert law | deviations from beer's law | mid ir spectroscopy | near ir spectroscopy | raman spectroscopy | fourier transform spectroscopies | x-ray methods | x-ray fluorescence spectroscopy | gc-ms | lc-ms | Physical sciences | F000

License

Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-nd/2.0/uk/ http://creativecommons.org/licenses/by-nc-nd/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.51 Interaction of Radiation with Matter (MIT) 22.51 Interaction of Radiation with Matter (MIT)

Description

Basic principles of interaction of electromagnetic radiation, thermal neutrons, and charged particles with matter. Introduces classical electrodynamics, quantum theory of radiation, time-dependent perturbation theory, transition probabilities and cross sections describing interaction of various radiations with atomic systems. Applications include theory of nuclear magnetic resonance; Rayleigh, Raman, and Compton scattering; photoelectric effect; and use of thermal neutron scattering as a tool in condensed matter research. Basic principles of interaction of electromagnetic radiation, thermal neutrons, and charged particles with matter. Introduces classical electrodynamics, quantum theory of radiation, time-dependent perturbation theory, transition probabilities and cross sections describing interaction of various radiations with atomic systems. Applications include theory of nuclear magnetic resonance; Rayleigh, Raman, and Compton scattering; photoelectric effect; and use of thermal neutron scattering as a tool in condensed matter research.

Subjects

electromagnetic radiation | electromagnetic radiation | thermal neutrons | thermal neutrons | charged particles | charged particles | classical electrodynamics | classical electrodynamics | quantum theory | quantum theory | time-dependent perturbation theory | time-dependent perturbation theory | transition probabilities | transition probabilities | atomic systems | atomic systems | nuclear magnetic resonance | nuclear magnetic resonance | photoelectric effect | photoelectric effect | thermal neutron scattering | thermal neutron scattering | condensed matter research | condensed matter research

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.033 Computer System Engineering (SMA 5501) (MIT) 6.033 Computer System Engineering (SMA 5501) (MIT)

Description

This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. We will also look at case studies of working systems and readings from the current literature provide comparisons and contrasts, and do two design projects. Students engage in extensive written communication exercises. Enrollment may be limited. This course is worth 4 Engineering Design Points.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5501 (Computer System Engineering). This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. We will also look at case studies of working systems and readings from the current literature provide comparisons and contrasts, and do two design projects. Students engage in extensive written communication exercises. Enrollment may be limited. This course is worth 4 Engineering Design Points.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5501 (Computer System Engineering).

Subjects

computer software | computer software | hardware systems | hardware systems | controlling complexity | controlling complexity | strong modularity | strong modularity | client-server design | client-server design | virtual memory | virtual memory | threads | threads | networks | networks | atomicity | atomicity | coordination | coordination | parallel activities | parallel activities | recovery | recovery | reliability | reliability | privacy | privacy | security | security | encryption | encryption | impact on society | impact on society | computer systems | computer systems | case studies | case studies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.111 Principles of Chemical Science (MIT) 5.111 Principles of Chemical Science (MIT)

Description

5.111 is an introductory chemistry course, emphasizing basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. This course also introduces the chemistry of biological, inorganic, and organic molecules. 5.111 is an introductory chemistry course, emphasizing basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. This course also introduces the chemistry of biological, inorganic, and organic molecules.

Subjects

introductory chemistry | introductory chemistry | atomic structure | atomic structure | molecular electronic structure | molecular electronic structure | thermodynamics | thermodynamics | acid-base equillibrium | acid-base equillibrium | redox | redox | chemical kinetics | chemical kinetics | catalysis | catalysis | lewis structures | lewis structures | VSEPR theory | VSEPR theory | acid-base equilibrium | acid-base equilibrium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.011 American Science: Ethical Conflicts and Political Choices (MIT) STS.011 American Science: Ethical Conflicts and Political Choices (MIT)

Description

This course explores the changing roles, ethical conflicts, and public perceptions of science and scientists in American society from World War II to the present. The class examines specific historical episodes focusing on debates between scientists and the contextual factors influencing their opinions and decisions. Topics include the atomic bomb project, environmental controversies, the Challenger disaster, biomedical research, genetic engineering, use/misuse of human subjects, scientific misconduct, and whistleblowing. This course explores the changing roles, ethical conflicts, and public perceptions of science and scientists in American society from World War II to the present. The class examines specific historical episodes focusing on debates between scientists and the contextual factors influencing their opinions and decisions. Topics include the atomic bomb project, environmental controversies, the Challenger disaster, biomedical research, genetic engineering, use/misuse of human subjects, scientific misconduct, and whistleblowing.

Subjects

Science | Science | Technology | Technology | and Society | and Society | risk | risk | science | science | society | society | ethics | ethics | politics | politics | technology | technology | history | history | america | america | controversy | controversy | atomic | atomic | whistleblowing | whistleblowing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT) II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs. Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subjects

Junior Lab | Junior Lab | experimental | experimental | atomic | atomic | nuclear | nuclear | physics | physics | optics | optics | photoelectric effect | photoelectric effect | poisson | poisson | statistics | statistics | electromagnetic pulse | electromagnetic pulse | compton scattering | compton scattering | Franck-Hertz experiment | Franck-Hertz experiment | relativistic dynamics | relativistic dynamics | nuclear magnetic resonance | nuclear magnetic resonance | spin echoes | spin echoes | cosmic-ray muons | cosmic-ray muons | Rutherford Scattering | Rutherford Scattering | emission spectra | emission spectra | neutron physics | neutron physics | Johnson noise | Johnson noise | shot noise | shot noise | quantum mechanics | quantum mechanics | alpha decay | alpha decay | radio astrophysics | radio astrophysics | Zeeman effect | Zeeman effect | rubidium | rubidium | M?ssbauer | M?ssbauer | spectroscopy | spectroscopy | X-Ray physics | X-Ray physics | superconductivity | superconductivity | Doppler-free | Doppler-free | laser | laser

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.61 Physical Chemistry (MIT) 5.61 Physical Chemistry (MIT)

Description

This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems -- the particle in a box, the harmonic oscillator, the rigid rotor and the hydrogen atom. The lectures continue with a discussion of atomic structure and the Periodic Table. The final lectures cover applications to chemical bonding including valence bond and molecular orbital theory, molecular structure, spectroscopy.AcknowledgementsThe material for 5.61 has evolved over a period of many years, and, accordingly, several faculty members have contributed to the development of the course contents. The original version of the lecture notes that are available on OCW was prepa This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems -- the particle in a box, the harmonic oscillator, the rigid rotor and the hydrogen atom. The lectures continue with a discussion of atomic structure and the Periodic Table. The final lectures cover applications to chemical bonding including valence bond and molecular orbital theory, molecular structure, spectroscopy.AcknowledgementsThe material for 5.61 has evolved over a period of many years, and, accordingly, several faculty members have contributed to the development of the course contents. The original version of the lecture notes that are available on OCW was prepa

Subjects

physical chemistry | physical chemistry | quantum mechanics | quantum mechanics | quantum chemistry | quantum chemistry | particles and waves; wave mechanics | particles and waves; wave mechanics | atomic structure | atomic structure | valence orbital | valence orbital | molecular orbital theory | molecular orbital theory | molecular structure | molecular structure | photochemistry | photochemistry | particles and waves | wave mechanics | particles and waves | wave mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.62 Physical Chemistry II (MIT) 5.62 Physical Chemistry II (MIT)

Description

This subject deals primarily with elementary statistical mechanics, transport properties, kinetic theory, solid state, reaction rate theory, and chemical reaction dynamics.AcknowledgementsThe lecture note materials for this course include contributions from Professor Sylvia T. Ceyer. The Staff for this course would like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Chemistry Department affiliated with course #5.62. Since the following works have evolved over a period of many years, no single source can be attributed. This subject deals primarily with elementary statistical mechanics, transport properties, kinetic theory, solid state, reaction rate theory, and chemical reaction dynamics.AcknowledgementsThe lecture note materials for this course include contributions from Professor Sylvia T. Ceyer. The Staff for this course would like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Chemistry Department affiliated with course #5.62. Since the following works have evolved over a period of many years, no single source can be attributed.

Subjects

physical chemistry | physical chemistry | partition functions | partition functions | atomic degrees of freedom | atomic degrees of freedom | molecular degrees of freedom | molecular degrees of freedom | chemical equilibrium | chemical equilibrium | thermodynamics | thermodynamics | intermolecular potentials | intermolecular potentials | equations of state | equations of state | solid state chemistry | solid state chemistry | einstein and debye solids | einstein and debye solids | kinetic theory | kinetic theory | rate theory | rate theory | chemical kinetics | chemical kinetics | transition state theory | transition state theory | RRKM theory | RRKM theory | collision theory | collision theory | equipartition | equipartition | fermi-dirac statistics | fermi-dirac statistics | boltzmann statistics | boltzmann statistics | bose-einstein statistics | bose-einstein statistics | statistical mechanics | statistical mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.782J Design of Medical Devices and Implants (MIT) 2.782J Design of Medical Devices and Implants (MIT)

Description

Solution of clinical problems by use of implants and other medical devices. Systematic use of cell-matrix control volumes. The role of stress analysis in the design process. Anatomic fit: shape and size of implants. Selection of biomaterials. Instrumentation for surgical implantation procedures. Preclinical testing for safety and efficacy: risk/benefit ratio assessment. Evaluation of clinical performance: design of clinical trials. Project materials drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants. Solution of clinical problems by use of implants and other medical devices. Systematic use of cell-matrix control volumes. The role of stress analysis in the design process. Anatomic fit: shape and size of implants. Selection of biomaterials. Instrumentation for surgical implantation procedures. Preclinical testing for safety and efficacy: risk/benefit ratio assessment. Evaluation of clinical performance: design of clinical trials. Project materials drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants.

Subjects

clinical problems | clinical problems | implants | implants | medical devices | medical devices | cell-matrix control volumes | cell-matrix control volumes | stress analysis | stress analysis | Anatomic fit | Anatomic fit | biomaterials | biomaterials | surgical implantation procedures | surgical implantation procedures | Preclinical testing | Preclinical testing | risk/benefit ratio assessment | risk/benefit ratio assessment | clinical performance | clinical performance | clinical trials | clinical trials | orthopedic devices | orthopedic devices | soft tissue implants | soft tissue implants | artificial organs | artificial organs | dental implants | dental implants | BE.451J | BE.451J | 2.782 | 2.782 | 3.961 | 3.961 | BE.451 | BE.451 | HST.524 | HST.524 | 20.451 | 20.451

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.728 Applied Quantum and Statistical Physics (MIT) 6.728 Applied Quantum and Statistical Physics (MIT)

Description

6.728 covers concepts in elementary quantum mechanics and statistical physics. The course introduces applied quantum physics and  emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others. 6.728 covers concepts in elementary quantum mechanics and statistical physics. The course introduces applied quantum physics and  emphasizes an experimental basis for quantum mechanics. Concepts covered include: Schrodinger's equation applied to the free particle, tunneling, the harmonic oscillator, and hydrogen atom, variational methods, Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions, and simple models for metals, semiconductors, and devices such as electron microscopes, scanning tunneling microscope, thermonic emitters, atomic force microscope, and others.

Subjects

applied quantum physics | applied quantum physics | quantum physics | quantum physics | statistical physics | statistical physics | quantum mechanics | quantum mechanics | Schrodinger | Schrodinger | tunneling | tunneling | harmonic oscillator | harmonic oscillator | hydrogen atom | hydrogen atom | variational methods | variational methods | Fermi-Dirac | Fermi-Dirac | Bose-Einstein | Bose-Einstein | Boltzmann | Boltzmann | distribution function | distribution function | electron microscope | electron microscope | scanning tunneling microscope | scanning tunneling microscope | thermonic emitter | thermonic emitter | atomic force microscope | atomic force microscope

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT) II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring. The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics.Technical RequirementsMATLAB® software is required to run the .mht files found on this course site.MATLAB® is a trademark of The Ma Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring. The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics.Technical RequirementsMATLAB® software is required to run the .mht files found on this course site.MATLAB® is a trademark of The Ma

Subjects

nuclear physics | nuclear physics | atomic physics | atomic physics | experimental physics | experimental physics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.036 The Visual System (MIT) 9.036 The Visual System (MIT)

Description

In this seminar anatomical, neurophysiological, imaging and behavioral research will be examined in an attempt to gain a better understanding of how information is processed in the primate visual system. The first five sessions provide an overview of the functional and structural organization of the visual system with a critical examination of some of the basic issues in the field. Thereafter the emphasis will shift to the question of how various aspects of the visual scene are processed in the visual system. We will study color vision, adaptation, the role of eye movements in carrying out visual analysis, motion perception, depth perception and pattern perception. In this seminar anatomical, neurophysiological, imaging and behavioral research will be examined in an attempt to gain a better understanding of how information is processed in the primate visual system. The first five sessions provide an overview of the functional and structural organization of the visual system with a critical examination of some of the basic issues in the field. Thereafter the emphasis will shift to the question of how various aspects of the visual scene are processed in the visual system. We will study color vision, adaptation, the role of eye movements in carrying out visual analysis, motion perception, depth perception and pattern perception.

Subjects

anatomical | anatomical | neurophysiological | neurophysiological | imaging | imaging | behavior | behavior | functional | functional | structural organization | structural organization | visual scene | visual scene | processing | processing | visual system | visual system | color vision | color vision | adaptation | adaptation | eye movements | eye movements | motion perception | motion perception | depth perception | depth perception | pattern perception | pattern perception | visual analysis | visual analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.091 Introduction to Solid State Chemistry (MIT) 3.091 Introduction to Solid State Chemistry (MIT)

Description

Basic principles of chemistry and their application to engineering systems. The relationship between electronic structure, chemical bonding, and atomic order. Characterization of atomic arrangements in crystalline and amorphous solids: metals, ceramics, semiconductors, and polymers (including proteins). Topical coverage of organic chemistry, solution chemistry, acid-base equilibria, electrochemistry, biochemistry, chemical kinetics, diffusion, and phase diagrams. Examples from industrial practice (including the environmental impact of chemical processes), from energy generation and storage, e.g., batteries and fuel cells, and from emerging technologies, e.g., photonic and biomedical devices. Basic principles of chemistry and their application to engineering systems. The relationship between electronic structure, chemical bonding, and atomic order. Characterization of atomic arrangements in crystalline and amorphous solids: metals, ceramics, semiconductors, and polymers (including proteins). Topical coverage of organic chemistry, solution chemistry, acid-base equilibria, electrochemistry, biochemistry, chemical kinetics, diffusion, and phase diagrams. Examples from industrial practice (including the environmental impact of chemical processes), from energy generation and storage, e.g., batteries and fuel cells, and from emerging technologies, e.g., photonic and biomedical devices.

Subjects

solid state chemistry | solid state chemistry | electronic structure | electronic structure | chemical bonding | chemical bonding | crystal structure | crystal structure | atomic and molecular arrangements | atomic and molecular arrangements | crystalline and amorphous solids | crystalline and amorphous solids

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.033 Computer System Engineering (MIT) 6.033 Computer System Engineering (MIT)

Description

Includes audio/video content: AV lectures. This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. Case studies of working systems and readings from the current literature provide comparisons and contrasts. Two design projects are required, and students engage in extensive written communication exercises. Includes audio/video content: AV lectures. This course covers topics on the engineering of computer software and hardware systems: techniques for controlling complexity; strong modularity using client-server design, virtual memory, and threads; networks; atomicity and coordination of parallel activities; recovery and reliability; privacy, security, and encryption; and impact of computer systems on society. Case studies of working systems and readings from the current literature provide comparisons and contrasts. Two design projects are required, and students engage in extensive written communication exercises.

Subjects

computer systems | computer systems | systems design | systems design | complexity | complexity | abstractions | abstractions | modularity | modularity | client server | client server | operating system | operating system | performance | performance | networks | networks | layering | layering | routing | routing | congestion control | congestion control | reliability | reliability | atomicity | atomicity | isolation | isolation | security | security | authentication | authentication | cryptography | cryptography | therac 25 | therac 25 | unix | unix | mapreduce | mapreduce | architecture of complexity | architecture of complexity | trusting trust | trusting trust | computer system design | computer system design

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.80 Small-Molecule Spectroscopy and Dynamics (MIT) 5.80 Small-Molecule Spectroscopy and Dynamics (MIT)

Description

The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy. The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy.

Subjects

spectroscopy | spectroscopy | harmonic oscillators | harmonic oscillators | matrix | matrix | hamiltonian | hamiltonian | heisenberg | heisenberg | vibrating rotor | vibrating rotor | Born-Oppenheimer | Born-Oppenheimer | diatomics | diatomics | laser schemes | laser schemes | angular momentum | angular momentum | hund's cases | hund's cases | energy levels | energy levels | second-order effects | second-order effects | perturbations | perturbations | Wigner-Eckart | Wigner-Eckart | Rydberg-Klein-Rees | Rydberg-Klein-Rees | rigid rotor | rigid rotor | asymmetric rotor | asymmetric rotor | vibronic coupling | vibronic coupling | wavepackets | wavepackets

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.111 Principles of Chemical Science (MIT) 5.111 Principles of Chemical Science (MIT)

Description

This course provides an introduction to the chemistry of biological, inorganic, and organic molecules. The emphasis is on basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. In an effort to illuminate connections between chemistry and biology, a list of the biology-, medicine-, and MIT research-related examples used in 5.111 is provided in Biology-Related Examples. Acknowledgements Development and implementation of the biology-related materials in this course were funded through an HHMI Professors grant to Prof. Catherine L. Drennan. This course provides an introduction to the chemistry of biological, inorganic, and organic molecules. The emphasis is on basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. In an effort to illuminate connections between chemistry and biology, a list of the biology-, medicine-, and MIT research-related examples used in 5.111 is provided in Biology-Related Examples. Acknowledgements Development and implementation of the biology-related materials in this course were funded through an HHMI Professors grant to Prof. Catherine L. Drennan.

Subjects

introductory chemistry | introductory chemistry | atomic structure | atomic structure | molecular electronic structure | molecular electronic structure | thermodynamics | thermodynamics | acid-base equillibrium | acid-base equillibrium | titration | titration | redox | redox | chemical kinetics | chemical kinetics | catalysis | catalysis | lewis structures | lewis structures | VSEPR theory | VSEPR theory | wave-particle duality | wave-particle duality | biochemistry | biochemistry | orbitals | orbitals | periodic trends | periodic trends | general chemistry | general chemistry | valence bond theory | valence bond theory | hybridization | hybridization | free energy | free energy | reaction mechanism | reaction mechanism | Rutherford backscattering | Rutherford backscattering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.011 American Science: Ethical Conflicts and Political Choices (MIT) STS.011 American Science: Ethical Conflicts and Political Choices (MIT)

Description

Includes audio/video content: AV special element video. We will explore the changing political choices and ethical dilemmas of American scientists from the atomic scientists of World War II to biologists in the present wrestling with the questions raised by cloning and other biotechnologies. As well as asking how we would behave if confronted with the same choices, we will try to understand the choices scientists have made by seeing them in their historical and political contexts. Some of the topics covered include: the original development of nuclear weapons and the bombing of Hiroshima and Nagasaki; the effects of the Cold War on American science; the space shuttle disasters; debates on the use of nuclear power, wind power, and biofuels; abuse of human subjects in psychological and othe Includes audio/video content: AV special element video. We will explore the changing political choices and ethical dilemmas of American scientists from the atomic scientists of World War II to biologists in the present wrestling with the questions raised by cloning and other biotechnologies. As well as asking how we would behave if confronted with the same choices, we will try to understand the choices scientists have made by seeing them in their historical and political contexts. Some of the topics covered include: the original development of nuclear weapons and the bombing of Hiroshima and Nagasaki; the effects of the Cold War on American science; the space shuttle disasters; debates on the use of nuclear power, wind power, and biofuels; abuse of human subjects in psychological and othe

Subjects

risk | risk | science | science | society | society | ethics | ethics | politics | politics | technology | technology | history | history | controversy | controversy | atomic | atomic | whistleblowing | whistleblowing | GMO | GMO | genetic engineering | genetic engineering | nuclear | nuclear | space exploration | space exploration | energy | energy | policy | policy | debate | debate | museum | museum | archeology | archeology | war | war | terrorism | terrorism | tradeoff | tradeoff | decision making | decision making | medicine | medicine | health care policy | health care policy | biotechnology | biotechnology | climate change | climate change | global warming | global warming | human subjects | human subjects

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata