Searching for atoms : 39 results found | RSS Feed for this search

1 2

3.012 Fundamentals of Materials Science (MIT) 3.012 Fundamentals of Materials Science (MIT)

Description

This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and stability of materials. Quantum mechanical descriptions of interacting electrons and atoms. Symmetry properties of molecules and solids. Structure of complex and disordered materials. Introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to molecular models of materials. Develops basis for understanding a broad range of materials phenomena, from heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism. Fundamentals are taught using real-world examples such as engineered all This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and stability of materials. Quantum mechanical descriptions of interacting electrons and atoms. Symmetry properties of molecules and solids. Structure of complex and disordered materials. Introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to molecular models of materials. Develops basis for understanding a broad range of materials phenomena, from heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism. Fundamentals are taught using real-world examples such as engineered all

Subjects

fundamentals of bonding | energetics | and structure | fundamentals of bonding | energetics | and structure | Quantum mechanical descriptions of interacting electrons and atoms | Quantum mechanical descriptions of interacting electrons and atoms | Symmetry properties of molecules and solids | Symmetry properties of molecules and solids | complex and disordered materials | complex and disordered materials | thermodynamic functions | thermodynamic functions | equilibrium properties | equilibrium properties | macroscopic behavior | macroscopic behavior | molecular models | molecular models | heat capacities | heat capacities | phase transformations | phase transformations | multiphase equilibria | multiphase equilibria | chemical reactions | chemical reactions | magnetism | magnetism | engineered alloys | engineered alloys | electronic and magnetic materials | electronic and magnetic materials | ionic and network solids | ionic and network solids | polymers | polymers | biomaterials | biomaterials | energetics | energetics | structure | structure | materials science | materials science | electrons | electrons | silicon | silicon | DNA | DNA | electronic bonding | electronic bonding | energy | energy | stability | stability | quantum mechanics | quantum mechanics | atoms | atoms | interactions | interactions | symmetry | symmetry | molecules | molecules | solids | solids | complex material | complex material | disorderd materials | disorderd materials | thermodynamic laws | thermodynamic laws | electronic materials | electronic materials | magnetic materials | magnetic materials | ionic solids | ionic solids | network solids | network solids | statistical mechanics | statistical mechanics | microstates | microstates | microscopic complexity | microscopic complexity | entropy | entropy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.067 Crystal Structure Refinement (MIT) 5.067 Crystal Structure Refinement (MIT)

Description

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules. This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules.

Subjects

chemistry | chemistry | crystal structure refinement | crystal structure refinement | practical aspects | practical aspects | crystal structure determination | crystal structure determination | data collection | data collection | strategies | strategies | data reduction | data reduction | refinement problems | refinement problems | organic | organic | inorganic | inorganic | molecules | molecules | SHELXL | SHELXL | hydrogen atoms | hydrogen atoms | disorder | disorder | pseudo symmetry | pseudo symmetry | merohedral twins | merohedral twins | pseudo-merohedral twins | pseudo-merohedral twins | twinning | twinning | non-merohedral twins | non-merohedral twins | PLATON | PLATON

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.841 Crystal Structure Refinement (MIT) 5.841 Crystal Structure Refinement (MIT)

Description

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules. This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules.

Subjects

chemistry | chemistry | crystal structure refinement | crystal structure refinement | practical aspects | practical aspects | crystal structure determination | crystal structure determination | data collection | data collection | strategies | strategies | data reduction | data reduction | refinement problems | refinement problems | organic | organic | inorganic | inorganic | molecules | molecules | SHELXL | SHELXL | hydrogen atoms | hydrogen atoms | disorder | disorder | pseudo symmetry | pseudo symmetry | merohedral twins | merohedral twins | pseudo-merohedral twins | pseudo-merohedral twins | twinning | twinning | non-merohedral twins | non-merohedral twins | PLATON | PLATON

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.72 Statistical Mechanics (MIT) 5.72 Statistical Mechanics (MIT)

Description

This course discusses the principles and methods of statistical mechanics. Topics covered include classical and quantum statistics, grand ensembles, fluctuations, molecular distribution functions, other concepts in equilibrium statistical mechanics, and topics in thermodynamics and statistical mechanics of irreversible processes. This course discusses the principles and methods of statistical mechanics. Topics covered include classical and quantum statistics, grand ensembles, fluctuations, molecular distribution functions, other concepts in equilibrium statistical mechanics, and topics in thermodynamics and statistical mechanics of irreversible processes.

Subjects

statistical mechanics | statistical mechanics | quantum | quantum | statistics | statistics | atoms | atoms | materials | materials | master equations | master equations | random walk | random walk | langevin | langevin | fokker | fokker | planck | planck | probability theory | probability theory | bloch-redfield | bloch-redfield | navier-stokes | navier-stokes | hydrodynamic | hydrodynamic | scattering | scattering | projection operator | projection operator | thermodynamics | thermodynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.067 Crystal Structure Refinement (MIT) 5.067 Crystal Structure Refinement (MIT)

Description

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules. This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules.

Subjects

chemistry | chemistry | crystal structure refinement | crystal structure refinement | practical aspects | practical aspects | crystal structure determination | crystal structure determination | data collection | data collection | strategies | strategies | data reduction | data reduction | refinement problems | refinement problems | organic | organic | inorganic | inorganic | molecules | molecules | SHELXL | SHELXL | hydrogen atoms | hydrogen atoms | disorder | disorder | pseudo symmetry | pseudo symmetry | merohedral twins | merohedral twins | pseudo-merohedral twins | pseudo-merohedral twins | twinning | twinning | non-merohedral twins | non-merohedral twins | PLATON | PLATON

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.3 Robert Boyle and Isaac Newton

Description

Part 2.3. An introduction to Robert Boyle's theory of corpuscularianism and Isaac Newton's ideas on mathematics and the universe. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

newton | corpuscularian | corpuscles | science | philosophy | gravity | atoms | mathematics | Physics | boyle | newton | corpuscularian | corpuscles | science | philosophy | gravity | atoms | mathematics | Physics | boyle

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129131/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.3 Robert Boyle and Isaac Newton

Description

Part 2.3. An introduction to Robert Boyle's theory of corpuscularianism and Isaac Newton's ideas on mathematics and the universe. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

newton | corpuscularian | corpuscles | science | philosophy | gravity | atoms | mathematics | Physics | boyle | newton | corpuscularian | corpuscles | science | philosophy | gravity | atoms | mathematics | Physics | boyle

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129131/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.3 Robert Boyle and Isaac Newton

Description

Part 2.3. An introduction to Robert Boyle's theory of corpuscularianism and Isaac Newton's ideas on mathematics and the universe.

Subjects

newton | corpuscularian | corpuscles | science | philosophy | gravity | atoms | mathematics | Physics | boyle | newton | corpuscularian | corpuscles | science | philosophy | gravity | atoms | mathematics | Physics | boyle

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://rss.oucs.ox.ac.uk/philfac/general-philosophy-video/rss20.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.72 Statistical Mechanics (MIT) 5.72 Statistical Mechanics (MIT)

Description

This course discusses the principles and methods of statistical mechanics. Topics covered include classical and quantum statistics, grand ensembles, fluctuations, molecular distribution functions, other concepts in equilibrium statistical mechanics, and topics in thermodynamics and statistical mechanics of irreversible processes. This course discusses the principles and methods of statistical mechanics. Topics covered include classical and quantum statistics, grand ensembles, fluctuations, molecular distribution functions, other concepts in equilibrium statistical mechanics, and topics in thermodynamics and statistical mechanics of irreversible processes.

Subjects

statistical mechanics | statistical mechanics | quantum | quantum | statistics | statistics | atoms | atoms | materials | materials | master equations | master equations | random walk | random walk | langevin | langevin | fokker | fokker | planck | planck | probability theory | probability theory | bloch-redfield | bloch-redfield | navier-stokes | navier-stokes | hydrodynamic | hydrodynamic | scattering | scattering | projection operator | projection operator | thermodynamics | thermodynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.422 Atomic and Optical Physics II (MIT) 8.422 Atomic and Optical Physics II (MIT)

Description

This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light, multi-photon processes, coherence, trapping and cooling, atomic interactions, and experimental methods. This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light, multi-photon processes, coherence, trapping and cooling, atomic interactions, and experimental methods.

Subjects

atomic | atomic | optical physics | optical physics | Non-classical states of light | Non-classical states of light | squeezed states | squeezed states | multi-photon processes | multi-photon processes | Raman scattering | Raman scattering | coherence | coherence | level crossings | level crossings | quantum beats | quantum beats | double resonance | double resonance | superradiance | superradiance | trapping and cooling | trapping and cooling | light forces | light forces | laser cooling | laser cooling | atom optics | atom optics | spectroscopy of trapped atoms and ions | spectroscopy of trapped atoms and ions | atomic interactions | atomic interactions | classical collisions | classical collisions | quantum scattering theory | quantum scattering theory | ultracold collisions | ultracold collisions | experimental methods | experimental methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.012 Fundamentals of Materials Science (MIT)

Description

This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and stability of materials. Quantum mechanical descriptions of interacting electrons and atoms. Symmetry properties of molecules and solids. Structure of complex and disordered materials. Introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to molecular models of materials. Develops basis for understanding a broad range of materials phenomena, from heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism. Fundamentals are taught using real-world examples such as engineered all

Subjects

fundamentals of bonding | energetics | and structure | Quantum mechanical descriptions of interacting electrons and atoms | Symmetry properties of molecules and solids | complex and disordered materials | thermodynamic functions | equilibrium properties | macroscopic behavior | molecular models | heat capacities | phase transformations | multiphase equilibria | chemical reactions | magnetism | engineered alloys | electronic and magnetic materials | ionic and network solids | polymers | biomaterials | energetics | structure | materials science | electrons | silicon | DNA | electronic bonding | energy | stability | quantum mechanics | atoms | interactions | symmetry | molecules | solids | complex material | disorderd materials | thermodynamic laws | electronic materials | magnetic materials | ionic solids | network solids | statistical mechanics | microstates | microscopic complexity | entropy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.422 Atomic and Optical Physics II (MIT)

Description

This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light, multi-photon processes, coherence, trapping and cooling, atomic interactions, and experimental methods.

Subjects

atomic | optical physics | Non-classical states of light | squeezed states | multi-photon processes | Raman scattering | coherence | level crossings | quantum beats | double resonance | superradiance | trapping and cooling | light forces | laser cooling | atom optics | spectroscopy of trapped atoms and ions | atomic interactions | classical collisions | quantum scattering theory | ultracold collisions | experimental methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2101.01: Understanding aluminium as a material

Description

This lecture is an introduction to aluminium alloys, fabrication methods and properties. It provides information about the classification of aluminium alloys, new alloys and composites; shaping processes, processing chains and component shapes; microstructure and the interaction between microstructure and properties. It promotes understanding of the fact that the correct choice of materials demands knowledge of alloys, shaping processes and microstructure and the interaction among them. The lecture is recommended for those situations, where a brief, general background information about aluminium is needed as an introduction of other subject areas of aluminium application technologies. This lecture is part of the self-contained course "Aluminium in Product Development", which is treated u

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | product | material characteristics | alloying elements | classification | composites | shaping processes | processing chain | component | sheet | extruded product | impact-extruded product | cast | microstructure | properties | atomic structure | dislocations | work hardening | atoms in solution | precipitation | solution heat treatment | artificial ageing | grains | dendrites | innovation | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.067 Crystal Structure Refinement (MIT)

Description

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules.

Subjects

chemistry | crystal structure refinement | practical aspects | crystal structure determination | data collection | strategies | data reduction | refinement problems | organic | inorganic | molecules | SHELXL | hydrogen atoms | disorder | pseudo symmetry | merohedral twins | pseudo-merohedral twins | twinning | non-merohedral twins | PLATON

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Interactions

Description

Authors:  Andy Buffler, Roger Fearick, Indresan Govender, Andre Peshier MODERN MECHANICS: Matter and interactions, conservation laws, the momentum principle, atomic nature of matter, conservation of energy, energy in macroscopic systems, energy quantization, multiparti Clicked 594 times. Last clicked 10/08/2014 - 18:58. Teaching & Learning Context:  <p>PHY1004W is a first-year, calculus-based introductory Physics course for Science students intending to continue with second-year Physics.</p>

Subjects

Physics | Science | Downloadable Documents | Text/HTML Webpages | Lecture Notes | English | Post-secondary | atoms | electricity | energy | magnetism | mechanics | physics | thermal physics | vpython

License

http://creativecommons.org/licenses/by/2.5/za/

Site sourced from

http://opencontent.uct.ac.za/recent-posts/feed.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Atomic Bonding

Description

Examining ionic and covalent between atoms.

Subjects

atoms | ionic bonding | covalent bonding | ions | electrons | chemistry | foundation science | Physical Sciences | Subjects allied to Medicine | Physical sciences | Subjects allied to medicine | F000 | B000

License

Attribution-Share Alike 2.0 UK: England & Wales Attribution-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-sa/2.0/uk/ http://creativecommons.org/licenses/by-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Elements that make up the human body

Description

Introducing the periodic table of elements, and identifying the major elements involved in the human body and their roles.

Subjects

atoms | metals | non-metals | biochemistry | chemistry | foundation science | periodic table | Physical Sciences | Subjects allied to Medicine | Physical sciences | Subjects allied to medicine | F000 | B000

License

Attribution-Share Alike 2.0 UK: England & Wales Attribution-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-sa/2.0/uk/ http://creativecommons.org/licenses/by-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Interdisciplinary Science Science of the Invisible Student Document

Description

their constituents.

Subjects

sfsoer | ukoer | atoms | biology | cells | chemistry | molecules | problem-based learning | physics | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2101.01: Understanding aluminium as a material

Description

This lecture is an introduction to aluminium alloys, fabrication methods and properties. It provides information about the classification of aluminium alloys, new alloys and composites; shaping processes, processing chains and component shapes; microstructure and the interaction between microstructure and properties. It promotes understanding of the fact that the correct choice of materials demands knowledge of alloys, shaping processes and microstructure and the interaction among them. The lecture is recommended for those situations, where a brief, general background information about aluminium is needed as an introduction of other subject areas of aluminium application technologies. This lecture is part of the self-contained course "Aluminium in Product Development", which is treated u

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | product | material characteristics | alloying elements | classification | composites | shaping processes | processing chain | component | sheet | extruded product | impact-extruded product | cast | microstructure | properties | atomic structure | dislocations | work hardening | atoms in solution | precipitation | solution heat treatment | artificial ageing | grains | dendrites | innovation | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

An Introduction to Environmental Change

Description

Using the geological record to reconstruct past environments and climates.

Subjects

geology | earth sciences | environmental sciences | climate change | geological record | quaternary | fossil | continental drift | palaeoclimate | palaeoclimatology | foraminifera | diatoms | radiolaria | ukoer | geesoer | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Biostratigraphy and microfossils

Description

This presentation focuses on the process of assigning relative ages to deep-sea sediments using the microfossil assemblages contained within them.

Subjects

earth sciences | environmental sciences | foraminifera | radiolaria | calcareous nannofossils | diatoms | ostracods | dinoflagellates | palaeoenvironment | biostratigraphy | microfossils | fossils | quaternary | micropalaeontology | ocean drilling | ukoer | geesoer | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Marine palaeoclimatology

Description

This presentation provides a basic introduction to marine palaeoclimatology and the CLIMAP Project.

Subjects

earth sciences | environmental sciences | geography | foraminifera | diatoms | dinoflagellates | palaeoenvironment | microfossils | plankton | palaeoclimatology | core | climate change | ukoer | geesoer | climap project | last glacial maximum | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata