Searching for bioMEMS : 4 results found | RSS Feed for this search

6.777J Design and Fabrication of Microelectromechanical Devices (MIT) 6.777J Design and Fabrication of Microelectromechanical Devices (MIT)

Description

6.777J / 2.372J is an introduction to microsystem design. Topics covered include: material properties, microfabrication technologies, structural behavior, sensing methods, fluid flow, microscale transport, noise, and amplifiers feedback systems. Student teams design microsystems (sensors, actuators, and sensing/control systems) of a variety of types, (e.g., optical MEMS, bioMEMS, inertial sensors) to meet a set of performance specifications (e.g., sensitivity, signal-to-noise) using a realistic microfabrication process. There is an emphasis on modeling and simulation in the design process. Prior fabrication experience is desirable. The course is worth 4 Engineering Design Points. 6.777J / 2.372J is an introduction to microsystem design. Topics covered include: material properties, microfabrication technologies, structural behavior, sensing methods, fluid flow, microscale transport, noise, and amplifiers feedback systems. Student teams design microsystems (sensors, actuators, and sensing/control systems) of a variety of types, (e.g., optical MEMS, bioMEMS, inertial sensors) to meet a set of performance specifications (e.g., sensitivity, signal-to-noise) using a realistic microfabrication process. There is an emphasis on modeling and simulation in the design process. Prior fabrication experience is desirable. The course is worth 4 Engineering Design Points.

Subjects

microsystem design | microsystem design | material properties | material properties | microfabrication technologies | microfabrication technologies | structural behavior | structural behavior | sensing methods | sensing methods | fluid flow | fluid flow | microscale transport | microscale transport | noise | noise | amplifiers feedback systems | amplifiers feedback systems | sensors | sensors | actuators | actuators | sensing/control systems | sensing/control systems | optical MEMS | optical MEMS | bioMEMS | bioMEMS | inertial sensors | inertial sensors | sensitivity | sensitivity | signal-to-noise | signal-to-noise | realistic microfabrication process | realistic microfabrication process

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.330J Fields, Forces and Flows in Biological Systems (MIT) 20.330J Fields, Forces and Flows in Biological Systems (MIT)

Description

This course introduces the basic driving forces for electric current, fluid flow, and mass transport, plus their application to a variety of biological systems. Basic mathematical and engineering tools will be introduced, in the context of biology and physiology. Various electrokinetic phenomena are also considered as an example of coupled nature of chemical-electro-mechanical driving forces. Applications include transport in biological tissues and across membranes, manipulation of cells and biomolecules, and microfluidics. This course introduces the basic driving forces for electric current, fluid flow, and mass transport, plus their application to a variety of biological systems. Basic mathematical and engineering tools will be introduced, in the context of biology and physiology. Various electrokinetic phenomena are also considered as an example of coupled nature of chemical-electro-mechanical driving forces. Applications include transport in biological tissues and across membranes, manipulation of cells and biomolecules, and microfluidics.

Subjects

hydrodynamic flow | hydrodynamic flow | electroosmosis | electroosmosis | diffusion | diffusion | electrophoresis | electrophoresis | reaction | reaction | membrane | membrane | cell | cell | biomolecule | biomolecule | microfluidics | microfluidics | ion transport | ion transport | electrokinetics | electrokinetics | Debye layer | Debye layer | Zeta potential | Zeta potential | inviscid flow | inviscid flow | viscous flow | viscous flow | tissue | tissue | organ | organ | biology | biology | molecular biology | molecular biology | Maxwell's equations | Maxwell's equations | electro-quasistatics | electro-quasistatics | Van der Waals | Van der Waals | bioMEMS | bioMEMS

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.777J Design and Fabrication of Microelectromechanical Devices (MIT)

Description

6.777J / 2.372J is an introduction to microsystem design. Topics covered include: material properties, microfabrication technologies, structural behavior, sensing methods, fluid flow, microscale transport, noise, and amplifiers feedback systems. Student teams design microsystems (sensors, actuators, and sensing/control systems) of a variety of types, (e.g., optical MEMS, bioMEMS, inertial sensors) to meet a set of performance specifications (e.g., sensitivity, signal-to-noise) using a realistic microfabrication process. There is an emphasis on modeling and simulation in the design process. Prior fabrication experience is desirable. The course is worth 4 Engineering Design Points.

Subjects

microsystem design | material properties | microfabrication technologies | structural behavior | sensing methods | fluid flow | microscale transport | noise | amplifiers feedback systems | sensors | actuators | sensing/control systems | optical MEMS | bioMEMS | inertial sensors | sensitivity | signal-to-noise | realistic microfabrication process

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.330J Fields, Forces and Flows in Biological Systems (MIT)

Description

This course introduces the basic driving forces for electric current, fluid flow, and mass transport, plus their application to a variety of biological systems. Basic mathematical and engineering tools will be introduced, in the context of biology and physiology. Various electrokinetic phenomena are also considered as an example of coupled nature of chemical-electro-mechanical driving forces. Applications include transport in biological tissues and across membranes, manipulation of cells and biomolecules, and microfluidics.

Subjects

hydrodynamic flow | electroosmosis | diffusion | electrophoresis | reaction | membrane | cell | biomolecule | microfluidics | ion transport | electrokinetics | Debye layer | Zeta potential | inviscid flow | viscous flow | tissue | organ | biology | molecular biology | Maxwell's equations | electro-quasistatics | Van der Waals | bioMEMS

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata