Searching for biomaterials : 48 results found | RSS Feed for this search

1 2

3.051J Materials for Biomedical Applications (MIT) 3.051J Materials for Biomedical Applications (MIT)

Description

This class provides an introduction to the interactions between cells and the surfaces of biomaterials. The course covers: surface chemistry and physics of selected metals, polymers, and ceramics; surface characterization methodology; modification of biomaterials surfaces; quantitative assays of cell behavior in culture; biosensors and microarrays; bulk properties of implants; and acute and chronic response to implanted biomaterials. General topics include biosensors, drug delivery, and tissue engineering. This class provides an introduction to the interactions between cells and the surfaces of biomaterials. The course covers: surface chemistry and physics of selected metals, polymers, and ceramics; surface characterization methodology; modification of biomaterials surfaces; quantitative assays of cell behavior in culture; biosensors and microarrays; bulk properties of implants; and acute and chronic response to implanted biomaterials. General topics include biosensors, drug delivery, and tissue engineering.

Subjects

interactions between proteins | cells and surfaces of biomaterials | interactions between proteins | cells and surfaces of biomaterials | surface chemistry and physics of metals | polymers and ceramics | surface chemistry and physics of metals | polymers and ceramics | Surface characterization methodology | Surface characterization methodology | Quantitative assays of cell behavior in culture | Quantitative assays of cell behavior in culture | Organ replacement therapies | Organ replacement therapies | Acute and chronic response to implanted biomaterials | Acute and chronic response to implanted biomaterials | biosensors | drug delivery and tissue engineering | biosensors | drug delivery and tissue engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (MIT) 20.462J Molecular Principles of Biomaterials (MIT)

Description

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces. This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subjects

biomaterials | biomaterials | biomaterial engineering | biomaterial engineering | biotechnology | biotechnology | cell-guiding surface | cell-guiding surface | molecular biomaterials | molecular biomaterials | drug release | drug release | polymers | polymers | pulsatile release | pulsatile release | polymerization | polymerization | polyer erosion | polyer erosion | tissue engineering | tissue engineering | hydrogels | hydrogels | adhesion | adhesion | migration | migration | drug diffusion | drug diffusion | molecular switches | molecular switches | molecular motors | molecular motors | nanoparticles | nanoparticles | microparticles | microparticles | vaccines | vaccines | drug targeting | drug targeting | micro carriers | micro carriers | nano carriers | nano carriers | intracellular drug delivery | intracellular drug delivery | 20.462 | 20.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.441 Biomaterials-Tissue Interactions (BE.441) (MIT) 20.441 Biomaterials-Tissue Interactions (BE.441) (MIT)

Description

This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to

Subjects

medical implants | medical implants | artificial organs | artificial organs | tissue engineering | tissue engineering | matrix | matrix | biomaterials | biomaterials | protein adsorption | protein adsorption | unit cell process | unit cell process | wound healing | wound healing | tissue remodeling | tissue remodeling | tissue regeneration | tissue regeneration | organ regeneration | organ regeneration | prosthesis | prosthesis | biodegradable | biodegradable | bioreplaceable implants | bioreplaceable implants | BE.441 | BE.441 | 2.79 | 2.79 | 3.96 | 3.96 | HST.522 | HST.522

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.051J Materials for Biomedical Applications (MIT)

Description

This class provides an introduction to the interactions between cells and the surfaces of biomaterials. The course covers: surface chemistry and physics of selected metals, polymers, and ceramics; surface characterization methodology; modification of biomaterials surfaces; quantitative assays of cell behavior in culture; biosensors and microarrays; bulk properties of implants; and acute and chronic response to implanted biomaterials. General topics include biosensors, drug delivery, and tissue engineering.

Subjects

interactions between proteins | cells and surfaces of biomaterials | surface chemistry and physics of metals | polymers and ceramics | Surface characterization methodology | Quantitative assays of cell behavior in culture | Organ replacement therapies | Acute and chronic response to implanted biomaterials | biosensors | drug delivery and tissue engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.225 Electronic and Mechanical Properties of Materials (MIT) 3.225 Electronic and Mechanical Properties of Materials (MIT)

Description

This course covers the fundamental concepts that determine the electrical, optical, magnetic and mechanical properties of metals, semiconductors, ceramics and polymers. The roles of bonding, structure (crystalline, defect, energy band and microstructure) and composition in influencing and controlling physical properties are discussed. Also included are case studies drawn from a variety of applications: semiconductor diodes and optical detectors, sensors, thin films, biomaterials, composites and cellular materials, and others. This course covers the fundamental concepts that determine the electrical, optical, magnetic and mechanical properties of metals, semiconductors, ceramics and polymers. The roles of bonding, structure (crystalline, defect, energy band and microstructure) and composition in influencing and controlling physical properties are discussed. Also included are case studies drawn from a variety of applications: semiconductor diodes and optical detectors, sensors, thin films, biomaterials, composites and cellular materials, and others.

Subjects

metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | bonding | bonding | structure | structure | energy band | energy band | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | optical detectors | optical detectors | sensors | sensors | thin films | thin films | biomaterials | biomaterials | cellular materials | cellular materials | magnetism | magnetism | polarity | polarity | viscoelasticity | viscoelasticity | plasticity | plasticity | fracture | fracture | materials selection | materials selection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.782J Design of Medical Devices and Implants (MIT) 2.782J Design of Medical Devices and Implants (MIT)

Description

Solution of clinical problems by use of implants and other medical devices. Systematic use of cell-matrix control volumes. The role of stress analysis in the design process. Anatomic fit: shape and size of implants. Selection of biomaterials. Instrumentation for surgical implantation procedures. Preclinical testing for safety and efficacy: risk/benefit ratio assessment. Evaluation of clinical performance: design of clinical trials. Project materials drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants. Solution of clinical problems by use of implants and other medical devices. Systematic use of cell-matrix control volumes. The role of stress analysis in the design process. Anatomic fit: shape and size of implants. Selection of biomaterials. Instrumentation for surgical implantation procedures. Preclinical testing for safety and efficacy: risk/benefit ratio assessment. Evaluation of clinical performance: design of clinical trials. Project materials drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants.

Subjects

clinical problems | clinical problems | implants | implants | medical devices | medical devices | cell-matrix control volumes | cell-matrix control volumes | stress analysis | stress analysis | Anatomic fit | Anatomic fit | biomaterials | biomaterials | surgical implantation procedures | surgical implantation procedures | Preclinical testing | Preclinical testing | risk/benefit ratio assessment | risk/benefit ratio assessment | clinical performance | clinical performance | clinical trials | clinical trials | orthopedic devices | orthopedic devices | soft tissue implants | soft tissue implants | artificial organs | artificial organs | dental implants | dental implants | BE.451J | BE.451J | 2.782 | 2.782 | 3.961 | 3.961 | BE.451 | BE.451 | HST.524 | HST.524 | 20.451 | 20.451

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Biomaterials Chemistry (MIT) Biomaterials Chemistry (MIT)

Description

This course covers principles of materials chemistry common to organic materials ranging from biological polypeptides to engineered block copolymers. Topics include molecular structure, polymer synthesis reactions, protein-protein interactions, multifunctional organic materials including polymeric nanoreactors, conducting polymers and virus-mediated biomineralization. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the ma This course covers principles of materials chemistry common to organic materials ranging from biological polypeptides to engineered block copolymers. Topics include molecular structure, polymer synthesis reactions, protein-protein interactions, multifunctional organic materials including polymeric nanoreactors, conducting polymers and virus-mediated biomineralization. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the ma

Subjects

polymeric nanoreactors | polymeric nanoreactors | virus-mediated biomineralization | virus-mediated biomineralization | conducting polymers | conducting polymers | biomaterials chemistry | biomaterials chemistry | organic materials | organic materials | polypeptides | polypeptides | block copolymers | block copolymers | polymer synthesis | polymer synthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.010J Introduction to Bioengineering (BE.010J) (MIT) 20.010J Introduction to Bioengineering (BE.010J) (MIT)

Description

Includes audio/video content: AV selected lectures, AV special element video. Bioengineering at MIT is represented by the diverse curricula offered by most Departments in the School of Engineering. This course samples the wide variety of bioengineering options for students who plan to major in one of the undergraduate Engineering degree programs. The beginning lectures describe the science basis for bioengineering with particular emphasis on molecular cell biology and systems biology. Bioengineering faculty will then describe the bioengineering options in a particular engineering course as well as the type of research conducted by faculty in the department. Includes audio/video content: AV selected lectures, AV special element video. Bioengineering at MIT is represented by the diverse curricula offered by most Departments in the School of Engineering. This course samples the wide variety of bioengineering options for students who plan to major in one of the undergraduate Engineering degree programs. The beginning lectures describe the science basis for bioengineering with particular emphasis on molecular cell biology and systems biology. Bioengineering faculty will then describe the bioengineering options in a particular engineering course as well as the type of research conducted by faculty in the department.

Subjects

biological engineering | biological engineering | bioengineering | bioengineering | biomems | biomems | biomaterials | biomaterials | biomechanical engineering | biomechanical engineering | biology | biology | engineering | engineering | bioprocessing | bioprocessing | biological materials | biological materials | biological engineers | biological engineers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.012 Fundamentals of Materials Science (MIT) 3.012 Fundamentals of Materials Science (MIT)

Description

This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and stability of materials. Quantum mechanical descriptions of interacting electrons and atoms. Symmetry properties of molecules and solids. Structure of complex and disordered materials. Introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to molecular models of materials. Develops basis for understanding a broad range of materials phenomena, from heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism. Fundamentals are taught using real-world examples such as engineered all This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and stability of materials. Quantum mechanical descriptions of interacting electrons and atoms. Symmetry properties of molecules and solids. Structure of complex and disordered materials. Introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to molecular models of materials. Develops basis for understanding a broad range of materials phenomena, from heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism. Fundamentals are taught using real-world examples such as engineered all

Subjects

fundamentals of bonding | energetics | and structure | fundamentals of bonding | energetics | and structure | Quantum mechanical descriptions of interacting electrons and atoms | Quantum mechanical descriptions of interacting electrons and atoms | Symmetry properties of molecules and solids | Symmetry properties of molecules and solids | complex and disordered materials | complex and disordered materials | thermodynamic functions | thermodynamic functions | equilibrium properties | equilibrium properties | macroscopic behavior | macroscopic behavior | molecular models | molecular models | heat capacities | heat capacities | phase transformations | phase transformations | multiphase equilibria | multiphase equilibria | chemical reactions | chemical reactions | magnetism | magnetism | engineered alloys | engineered alloys | electronic and magnetic materials | electronic and magnetic materials | ionic and network solids | ionic and network solids | polymers | polymers | biomaterials | biomaterials | energetics | energetics | structure | structure | materials science | materials science | electrons | electrons | silicon | silicon | DNA | DNA | electronic bonding | electronic bonding | energy | energy | stability | stability | quantum mechanics | quantum mechanics | atoms | atoms | interactions | interactions | symmetry | symmetry | molecules | molecules | solids | solids | complex material | complex material | disorderd materials | disorderd materials | thermodynamic laws | thermodynamic laws | electronic materials | electronic materials | magnetic materials | magnetic materials | ionic solids | ionic solids | network solids | network solids | statistical mechanics | statistical mechanics | microstates | microstates | microscopic complexity | microscopic complexity | entropy | entropy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.051J Materials for Biomedical Applications (MIT) 3.051J Materials for Biomedical Applications (MIT)

Description

This course gives an introduction to the interactions between proteins, cells and surfaces of biomaterials. It includes surface chemistry and physics of selected metals, polymers and ceramics, modification of biomaterials surfaces, and surface characterization methodology; quantitative assays of cell behavior in culture and methods of statistical analysis; organ replacement therapies and acute and chronic response to implanted biomaterials. The course includes topics in biosensors, drug delivery and tissue engineering. This course gives an introduction to the interactions between proteins, cells and surfaces of biomaterials. It includes surface chemistry and physics of selected metals, polymers and ceramics, modification of biomaterials surfaces, and surface characterization methodology; quantitative assays of cell behavior in culture and methods of statistical analysis; organ replacement therapies and acute and chronic response to implanted biomaterials. The course includes topics in biosensors, drug delivery and tissue engineering.

Subjects

Interactions between proteins | Interactions between proteins | cells | cells | Surface chemistry and physics of metals | Surface chemistry and physics of metals | polymers and ceramics | polymers and ceramics | Surface characterization methodology | Surface characterization methodology | Quantitative assays of cell behavior | Quantitative assays of cell behavior | Organ replacement therapies | Organ replacement therapies | Acute and chronic response to implanted biomaterials | Acute and chronic response to implanted biomaterials | Biosensors | Biosensors | drug delivery and tissue engineering | drug delivery and tissue engineering | Interactions between proteins | cells | Interactions between proteins | cells | Surface chemistry and physics of metals | polymers and ceramics | Surface chemistry and physics of metals | polymers and ceramics | Biosensors | drug delivery and tissue engineering | Biosensors | drug delivery and tissue engineering | BE.340J | BE.340J | 3.051 | 3.051 | BE.340 | BE.340 | 20.340 | 20.340

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.430J Fields, Forces, and Flows in Biological Systems (MIT) BE.430J Fields, Forces, and Flows in Biological Systems (MIT)

Description

This course covers the following topics: conduction, diffusion, convection in electrolytes; fields in heterogeneous media; electrical double layers; Maxwell stress tensor and electrical forces in physiological systems; and fluid and solid continua: equations of motion useful for porous, hydrated biological tissues. Case studies considered include membrane transport; electrode interfaces; electrical, mechanical, and chemical transduction in tissues; electrophoretic and electroosmotic flows; diffusion/reaction; and ECG. The course also examines electromechanical and physicochemical interactions in biomaterials and cells; orthopaedic, cardiovascular, and other clinical examples. This course covers the following topics: conduction, diffusion, convection in electrolytes; fields in heterogeneous media; electrical double layers; Maxwell stress tensor and electrical forces in physiological systems; and fluid and solid continua: equations of motion useful for porous, hydrated biological tissues. Case studies considered include membrane transport; electrode interfaces; electrical, mechanical, and chemical transduction in tissues; electrophoretic and electroosmotic flows; diffusion/reaction; and ECG. The course also examines electromechanical and physicochemical interactions in biomaterials and cells; orthopaedic, cardiovascular, and other clinical examples.

Subjects

biomaterials | biomaterials | conduction | conduction | diffusion | diffusion | convection in electrolytes | convection in electrolytes | fields in heterogeneous media | fields in heterogeneous media | electrical double layers | electrical double layers | Maxwell stress tensor | Maxwell stress tensor | fluid and solid continua | fluid and solid continua | biological tissues | biological tissues | membrane transport | membrane transport | electrode | electrode | transduction | transduction | electrophoretic flow | electrophoretic flow | electroosmotic flow | electroosmotic flow | diffusion reaction | diffusion reaction | ECG | ECG | orthopaedic | cardiovascular | orthopaedic | cardiovascular | 2.795J | 2.795J | 2.795 | 2.795 | 6.561J | 6.561J | 6.561 | 6.561 | 10.539J | 10.539J | 10.539 | 10.539 | HST.544J | HST.544J | HST.544 | HST.544

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.011J Statistical Thermodynamics of Biomolecular Systems (BE.011J) (MIT) 20.011J Statistical Thermodynamics of Biomolecular Systems (BE.011J) (MIT)

Description

This course provides an introduction to the physical chemistry of biological systems. Topics include: connection of macroscopic thermodynamic properties to microscopic molecular properties using statistical mechanics, chemical potentials, equilibrium states, binding cooperativity, behavior of macromolecules in solution and at interfaces, and solvation. Example problems include protein structure, genomic analysis, single molecule biomechanics, and biomaterials. This course provides an introduction to the physical chemistry of biological systems. Topics include: connection of macroscopic thermodynamic properties to microscopic molecular properties using statistical mechanics, chemical potentials, equilibrium states, binding cooperativity, behavior of macromolecules in solution and at interfaces, and solvation. Example problems include protein structure, genomic analysis, single molecule biomechanics, and biomaterials.

Subjects

physical chemistry of biological systems | physical chemistry of biological systems | macroscopic thermodynamic properties | macroscopic thermodynamic properties | microscopic molecular properties | microscopic molecular properties | statistical mechanics | statistical mechanics | chemical potentials | chemical potentials | equilibrium states | equilibrium states | binding cooperativity | binding cooperativity | behavior of macromolecules in solution and at interfaces | behavior of macromolecules in solution and at interfaces | solvation | solvation | protein structure | protein structure | genomic analysis | genomic analysis | single molecule biomechanics | single molecule biomechanics | biomaterials | biomaterials | BE.011J | BE.011J | BE.011 | BE.011 | 2.772 | 2.772

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.430J Fields, Forces, and Flows in Biological Systems (BE.430J) (MIT) 20.430J Fields, Forces, and Flows in Biological Systems (BE.430J) (MIT)

Description

This course covers the following topics: conduction, diffusion, convection in electrolytes; fields in heterogeneous media; electrical double layers; Maxwell stress tensor and electrical forces in physiological systems; and fluid and solid continua: equations of motion useful for porous, hydrated biological tissues. Case studies considered include membrane transport; electrode interfaces; electrical, mechanical, and chemical transduction in tissues; electrophoretic and electroosmotic flows; diffusion/reaction; and ECG. The course also examines electromechanical and physicochemical interactions in biomaterials and cells; orthopaedic, cardiovascular, and other clinical examples. This course covers the following topics: conduction, diffusion, convection in electrolytes; fields in heterogeneous media; electrical double layers; Maxwell stress tensor and electrical forces in physiological systems; and fluid and solid continua: equations of motion useful for porous, hydrated biological tissues. Case studies considered include membrane transport; electrode interfaces; electrical, mechanical, and chemical transduction in tissues; electrophoretic and electroosmotic flows; diffusion/reaction; and ECG. The course also examines electromechanical and physicochemical interactions in biomaterials and cells; orthopaedic, cardiovascular, and other clinical examples.

Subjects

biomaterials | biomaterials | conduction | conduction | diffusion | diffusion | convection in electrolytes | convection in electrolytes | fields in heterogeneous media | fields in heterogeneous media | electrical double layers | electrical double layers | Maxwell stress tensor | Maxwell stress tensor | fluid and solid continua | fluid and solid continua | biological tissues | biological tissues | membrane transport | membrane transport | electrode | electrode | transduction | transduction | electrophoretic flow | electrophoretic flow | electroosmotic flow | electroosmotic flow | diffusion reaction | diffusion reaction | ECG | ECG | orthopaedic | cardiovascular | orthopaedic | cardiovascular | 20.430 | 20.430 | 2.795 | 2.795 | 6.561 | 6.561 | 10.539 | 10.539 | HST.544 | HST.544

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.978 From Nano to Macro: Introduction to Atomistic Modeling Techniques (MIT) 1.978 From Nano to Macro: Introduction to Atomistic Modeling Techniques (MIT)

Description

The objective of this course is to introduce large-scale atomistic modeling techniques and highlight its importance for solving problems in modern engineering sciences. We demonstrate how atomistic modeling can be used to understand how materials fail under extreme loading, involving unfolding of proteins and propagation of cracks. This course was featured in an MIT Tech Talk article. The objective of this course is to introduce large-scale atomistic modeling techniques and highlight its importance for solving problems in modern engineering sciences. We demonstrate how atomistic modeling can be used to understand how materials fail under extreme loading, involving unfolding of proteins and propagation of cracks. This course was featured in an MIT Tech Talk article.

Subjects

large-scale atomistic | large-scale atomistic | large-scale atomistic modeling techniques | large-scale atomistic modeling techniques | modern engineering sciences | modern engineering sciences | atomistic modeling | atomistic modeling | extreme loading | extreme loading | ductile and brittle materials failure | ductile and brittle materials failure | molecular dynamics | molecular dynamics | simulations | simulations | Cauchy-Born rule | Cauchy-Born rule | biomechanics | biomechanics | biomaterials | biomaterials | copper nanocrystal | copper nanocrystal | nanomechanics | nanomechanics | material mechanics | material mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.010J Introduction to Bioengineering (MIT) BE.010J Introduction to Bioengineering (MIT)

Description

Bioengineering at MIT is represented by the diverse curricula offered by most Departments in the School of Engineering. This course samples the wide variety of bioengineering options for students who plan to major in one of the undergraduate Engineering degree programs. The beginning lectures describe the science basis for bioengineering with particular emphasis on molecular cell biology and systems biology. Bioengineering faculty will then describe the bioengineering options in a particular engineering course as well as the type of research conducted by faculty in the department.Technical RequirementsSpecial software is required to use some of the files in this course: .rm, .mp3. Bioengineering at MIT is represented by the diverse curricula offered by most Departments in the School of Engineering. This course samples the wide variety of bioengineering options for students who plan to major in one of the undergraduate Engineering degree programs. The beginning lectures describe the science basis for bioengineering with particular emphasis on molecular cell biology and systems biology. Bioengineering faculty will then describe the bioengineering options in a particular engineering course as well as the type of research conducted by faculty in the department.Technical RequirementsSpecial software is required to use some of the files in this course: .rm, .mp3.

Subjects

biological engineering | biological engineering | bioengineering | bioengineering | biomems | biomems | biomaterials | biomaterials | biomechanical engineering | biomechanical engineering | biology | biology | engineering | engineering | bioprocessing | bioprocessing | biological materials | biological materials | biological engineers | biological engineers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (MIT)

Description

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subjects

biomaterials | biomaterial engineering | biotechnology | cell-guiding surface | molecular biomaterials | drug release | polymers | pulsatile release | polymerization | polyer erosion | tissue engineering | hydrogels | adhesion | migration | drug diffusion | molecular switches | molecular motors | nanoparticles | microparticles | vaccines | drug targeting | micro carriers | nano carriers | intracellular drug delivery | 20.462 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.051J Materials for Biomedical Applications (MIT)

Description

This class provides an introduction to the interactions between cells and the surfaces of biomaterials. The course covers: surface chemistry and physics of selected metals, polymers, and ceramics; surface characterization methodology; modification of biomaterials surfaces; quantitative assays of cell behavior in culture; biosensors and microarrays; bulk properties of implants; and acute and chronic response to implanted biomaterials. General topics include biosensors, drug delivery, and tissue engineering.

Subjects

interactions between proteins | cells and surfaces of biomaterials | surface chemistry and physics of metals | polymers and ceramics | Surface characterization methodology | Quantitative assays of cell behavior in culture | Organ replacement therapies | Acute and chronic response to implanted biomaterials | biosensors | drug delivery and tissue engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.010J Introduction to Bioengineering (MIT) BE.010J Introduction to Bioengineering (MIT)

Description

Designed as a freshmen seminar course, faculty from various School of Engineering departments describe the bioengineering research and educational opportunities specific to and offered by their departments. Background lectures by the BE.010J staff introduce students to the fundamental scientific basis for bioengineering. Specially produced videos provide additional background information that is supplemented with readings from newspaper and magazine articles.Technical RequirementsRealOne™ Player is required to run the .rm files found in this course. Designed as a freshmen seminar course, faculty from various School of Engineering departments describe the bioengineering research and educational opportunities specific to and offered by their departments. Background lectures by the BE.010J staff introduce students to the fundamental scientific basis for bioengineering. Specially produced videos provide additional background information that is supplemented with readings from newspaper and magazine articles.Technical RequirementsRealOne™ Player is required to run the .rm files found in this course.

Subjects

biological engineering | biological engineering | bioengineering | bioengineering | biomems | biomems | biomaterials | biomaterials | biomechanical engineering | biomechanical engineering | biology | biology | engineering | engineering | bioprocessing | bioprocessing | biological materials | biological materials | biological engineers | biological engineers | BE.010 | BE.010 | 2.790 | 2.790 | 6.025 | 6.025 | 7.38 | 7.38 | 10.010 | 10.010

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.011J Statistical Thermodynamics of Biomolecular Systems (MIT) BE.011J Statistical Thermodynamics of Biomolecular Systems (MIT)

Description

This course provides an introduction to the physical chemistry of biological systems. Topics include: connection of macroscopic thermodynamic properties to microscopic molecular properties using statistical mechanics, chemical potentials, equilibrium states, binding cooperativity, behavior of macromolecules in solution and at interfaces, and solvation. Example problems include protein structure, genomic analysis, single molecule biomechanics, and biomaterials.Technical RequirementsMATLAB® software is required to run the .m and .fig files found on this course site. This course provides an introduction to the physical chemistry of biological systems. Topics include: connection of macroscopic thermodynamic properties to microscopic molecular properties using statistical mechanics, chemical potentials, equilibrium states, binding cooperativity, behavior of macromolecules in solution and at interfaces, and solvation. Example problems include protein structure, genomic analysis, single molecule biomechanics, and biomaterials.Technical RequirementsMATLAB® software is required to run the .m and .fig files found on this course site.

Subjects

physical chemistry of biological systems | physical chemistry of biological systems | macroscopic thermodynamic properties | macroscopic thermodynamic properties | microscopic molecular properties | microscopic molecular properties | statistical mechanics | statistical mechanics | chemical potentials | chemical potentials | equilibrium states | equilibrium states | binding cooperativity | binding cooperativity | behavior of macromolecules in solution and at interfaces | behavior of macromolecules in solution and at interfaces | solvation | solvation | protein structure | protein structure | genomic analysis | genomic analysis | single molecule biomechanics | single molecule biomechanics | biomaterials | biomaterials | 2.772J | 2.772J | BE.011 | BE.011 | 2.772 | 2.772

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.441 Biomaterials-Tissue Interactions (MIT) BE.441 Biomaterials-Tissue Interactions (MIT)

Description

This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to

Subjects

medical implants | medical implants | artificial organs | artificial organs | tissue engineering | tissue engineering | matrix | matrix | biomaterials | biomaterials | protein adsorption | protein adsorption | unit cell process | unit cell process | wound healing | wound healing | tissue remodeling | tissue remodeling | tissue regeneration | tissue regeneration | organ regeneration | organ regeneration | prosthesis | prosthesis | biodegradable | biodegradable | bioreplaceable implants | bioreplaceable implants | 2.79J | 2.79J | 3.96J | 3.96J | HST.522J | HST.522J | 2.79 | 2.79 | 3.96 | 3.96 | HST.522 | HST.522

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.22 Mechanical Properties of Materials (MIT) 3.22 Mechanical Properties of Materials (MIT)

Description

This course explores the phenomenology of mechanical behavior of materials at the macroscopic level and the relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics covered include elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Case studies and examples are drawn from structural and functional applications that include a variety of material classes: metals, ceramics, polymers, thin films, composites, and cellular materials. This course explores the phenomenology of mechanical behavior of materials at the macroscopic level and the relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics covered include elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Case studies and examples are drawn from structural and functional applications that include a variety of material classes: metals, ceramics, polymers, thin films, composites, and cellular materials.

Subjects

metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | bonding | bonding | structure | structure | energy band | energy band | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | optical detectors | optical detectors | sensors | sensors | thin films | thin films | biomaterials | biomaterials | cellular materials | cellular materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.782J Design of Medical Devices and Implants (MIT) 2.782J Design of Medical Devices and Implants (MIT)

Description

This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials. Student project materials are drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants. This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials. Student project materials are drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants.

Subjects

2.782 | 2.782 | 3.961 | 3.961 | 20.451 | 20.451 | HST.524 | HST.524 | clinical problems | clinical problems | implants | implants | medical devices | medical devices | cell-matrix control volumes | cell-matrix control volumes | stress analysis | stress analysis | anatomic fit | anatomic fit | biomaterials | biomaterials | surgical implantation procedures | surgical implantation procedures | Preclinical testing | Preclinical testing | risk/benefit ratio assessment | risk/benefit ratio assessment | clinical performance | clinical performance | clinical trials | clinical trials | orthopedic devices | orthopedic devices | soft tissue implants | soft tissue implants | artificial organs | artificial organs | dental implants | dental implants | stent | stent | prosthesis | prosthesis | scaffold | scaffold | bio-implant | bio-implant | scar | scar | genetics | genetics | skin | skin | nerve | nerve | bone | bone | tooth | tooth | joint | joint | FDA | FDA | FDA approval | FDA approval | cartilage | cartilage | ACL | ACL | health | health | regulation | regulation | healthcare | healthcare | medicine | medicine | bioengineering | bioengineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.225 Electronic and Mechanical Properties of Materials (MIT) 3.225 Electronic and Mechanical Properties of Materials (MIT)

Description

Electrical, optical, magnetic, and mechanical properties of metals, semiconductors, ceramics, and polymers. Discussion of roles of bonding, structure (crystalline, defect, energy band, and microstructure), and composition in influencing and controlling physical properties. Case studies drawn from a variety of applications including semiconductor diodes, optical detectors, sensors, thin films, biomaterials, composites, and cellular materials. Electrical, optical, magnetic, and mechanical properties of metals, semiconductors, ceramics, and polymers. Discussion of roles of bonding, structure (crystalline, defect, energy band, and microstructure), and composition in influencing and controlling physical properties. Case studies drawn from a variety of applications including semiconductor diodes, optical detectors, sensors, thin films, biomaterials, composites, and cellular materials.

Subjects

metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | bonding | bonding | energy band | energy band | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | optical detectors | optical detectors | sensors | sensors | thin films | thin films | biomaterials | biomaterials | cellular materials | cellular materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.010J Introduction to Bioengineering (MIT)

Description

Bioengineering at MIT is represented by the diverse curricula offered by most Departments in the School of Engineering. This course samples the wide variety of bioengineering options for students who plan to major in one of the undergraduate Engineering degree programs. The beginning lectures describe the science basis for bioengineering with particular emphasis on molecular cell biology and systems biology. Bioengineering faculty will then describe the bioengineering options in a particular engineering course as well as the type of research conducted by faculty in the department.Technical RequirementsSpecial software is required to use some of the files in this course: .rm, .mp3.

Subjects

biological engineering | bioengineering | biomems | biomaterials | biomechanical engineering | biology | engineering | bioprocessing | biological materials | biological engineers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.010J Introduction to Bioengineering (MIT)

Description

Designed as a freshmen seminar course, faculty from various School of Engineering departments describe the bioengineering research and educational opportunities specific to and offered by their departments. Background lectures by the BE.010J staff introduce students to the fundamental scientific basis for bioengineering. Specially produced videos provide additional background information that is supplemented with readings from newspaper and magazine articles.Technical RequirementsRealOne™ Player is required to run the .rm files found in this course.

Subjects

biological engineering | bioengineering | biomems | biomaterials | biomechanical engineering | biology | engineering | bioprocessing | biological materials | biological engineers | BE.010 | 2.790 | 6.025 | 7.38 | 10.010

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata