Searching for biotechnology : 63 results found | RSS Feed for this search

1 2 3

7.88J Protein Folding Problem (MIT) 7.88J Protein Folding Problem (MIT)

Description

This course focuses on the mechanisms by which the amino acid sequence of polypeptide chains (proteins), determine their three-dimensional conformation. Topics in this course include sequence determinants of secondary structure, the folding of newly synthesized polypeptide chains within cells, folding intermediates aggregation and competing off-pathway reactions, and the unfolding and refolding of proteins in vitro. Additional topics covered are the role of helper proteins such as chaperonins and isomerases, protein recovery problems in the biotechnology industry, and diseases found associated with protein folding defects. This course focuses on the mechanisms by which the amino acid sequence of polypeptide chains (proteins), determine their three-dimensional conformation. Topics in this course include sequence determinants of secondary structure, the folding of newly synthesized polypeptide chains within cells, folding intermediates aggregation and competing off-pathway reactions, and the unfolding and refolding of proteins in vitro. Additional topics covered are the role of helper proteins such as chaperonins and isomerases, protein recovery problems in the biotechnology industry, and diseases found associated with protein folding defects.

Subjects

amino acid sequence | amino acid sequence | polypeptide chains | polypeptide chains | sequence determinants | sequence determinants | folding | folding | synthesized polypeptide chains within cells | synthesized polypeptide chains within cells | unfolding and refolding of proteins in vitro | unfolding and refolding of proteins in vitro | folding intermediates aggregation | folding intermediates aggregation | competing off-pathway reactions | competing off-pathway reactions | chaperonins | chaperonins | isomerases | isomerases | helper proteins | helper proteins | protein recovery problems | protein recovery problems | biotechnology industry | biotechnology industry | protein folding defects | protein folding defects | 3-D conformation | 3-D conformation | globular proteins | globular proteins | fibrous proteins | fibrous proteins | kinetics | kinetics | in vitro refolding | in vitro refolding | pathways | pathways | in vivo folding | in vivo folding | synthesized proteins | synthesized proteins | aggregation | aggregation | protein misfolding | protein misfolding | human disease | human disease | protein folding | protein folding | genome sequences | genome sequences | 7.88 | 7.88 | 5.48 | 5.48 | 7.24 | 7.24 | 10.543 | 10.543

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.391 Early Stage Capital (MIT) 15.391 Early Stage Capital (MIT)

Description

15.391 examines the elements of raising early stage capital, focusing on start-up ventures and the early stages of company development. This course also prepares entrepreneurs to make the best use of outside advisors, and to negotiate effective long-term relationships with funding sources. Working in teams, students interact with venture capitalists and other professionals throughout the semester. Disclaimer: The web sites for this course and the materials they offer are provided for educational use only. They are not a substitute for the advice of an attorney and no attorney-client relationship is created by using them. All materials are provided "as-is", without any express or implied warranties. 15.391 examines the elements of raising early stage capital, focusing on start-up ventures and the early stages of company development. This course also prepares entrepreneurs to make the best use of outside advisors, and to negotiate effective long-term relationships with funding sources. Working in teams, students interact with venture capitalists and other professionals throughout the semester. Disclaimer: The web sites for this course and the materials they offer are provided for educational use only. They are not a substitute for the advice of an attorney and no attorney-client relationship is created by using them. All materials are provided "as-is", without any express or implied warranties.

Subjects

raising venture capital | raising venture capital | starting business | starting business | structuring deals | structuring deals | valuating companies | valuating companies | entrepreneurship | entrepreneurship | venture capitalist | venture capitalist | finding early stage capital | finding early stage capital | negotiate investments | negotiate investments | new business laws | new business laws | financial simulations | financial simulations | build relationships | build relationships | start-up ventures | start-up ventures | company development | company development | using outside advisors | using outside advisors | funding sources | funding sources | term sheet | term sheet | VC | VC | entrepreneur | entrepreneur | pursuing seed money | pursuing seed money | biotechnology | biotechnology | biotech | biotech | angel financing | angel financing | first round money | first round money

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Biomolecular Kinetics and Cell Dynamics (MIT) 20.320 Biomolecular Kinetics and Cell Dynamics (MIT)

Description

This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling. This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

kinetics of molecular processes | kinetics of molecular processes | dynamics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | kinetics of cellular processes | dynamics of cellular processes | dynamics of cellular processes | intracellular scale | intracellular scale | extracellular scale | extracellular scale | and cell population scale | and cell population scale | biotechnology applications | biotechnology applications | gene regulation networks | gene regulation networks | nucleic acid hybridization | nucleic acid hybridization | signal transduction pathways | signal transduction pathways | cell populations in tissues | cell populations in tissues | cell populations in bioreactors | cell populations in bioreactors | experimental methods | experimental methods | quantitative analysis | quantitative analysis | computational modeling | computational modeling | cell population scale | cell population scale

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.A12 Freshman Seminar: Structural Basis of Genetic Material: Nucleic Acids (MIT) 7.A12 Freshman Seminar: Structural Basis of Genetic Material: Nucleic Acids (MIT)

Description

Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials. Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials.

Subjects

nucleic acids | nucleic acids | DNA | DNA | RNA | RNA | genetics | genetics | genes | genes | genetic material | genetic material | double helix | double helix | molecular biology | molecular biology | biotechnology | biotechnology | structure | structure | function | function | heredity | heredity | complementarity | complementarity | biological materials | biological materials | genetic code | genetic code | oligonucleotides | oligonucleotides | supercoiled DNA | supercoiled DNA | polyribosome | polyribosome | tRNA | tRNA | reverse transcription | reverse transcription | central dogma | central dogma | transcription | transcription

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.011 American Science: Ethical Conflicts and Political Choices (MIT) STS.011 American Science: Ethical Conflicts and Political Choices (MIT)

Description

Includes audio/video content: AV special element video. We will explore the changing political choices and ethical dilemmas of American scientists from the atomic scientists of World War II to biologists in the present wrestling with the questions raised by cloning and other biotechnologies. As well as asking how we would behave if confronted with the same choices, we will try to understand the choices scientists have made by seeing them in their historical and political contexts. Some of the topics covered include: the original development of nuclear weapons and the bombing of Hiroshima and Nagasaki; the effects of the Cold War on American science; the space shuttle disasters; debates on the use of nuclear power, wind power, and biofuels; abuse of human subjects in psychological and othe Includes audio/video content: AV special element video. We will explore the changing political choices and ethical dilemmas of American scientists from the atomic scientists of World War II to biologists in the present wrestling with the questions raised by cloning and other biotechnologies. As well as asking how we would behave if confronted with the same choices, we will try to understand the choices scientists have made by seeing them in their historical and political contexts. Some of the topics covered include: the original development of nuclear weapons and the bombing of Hiroshima and Nagasaki; the effects of the Cold War on American science; the space shuttle disasters; debates on the use of nuclear power, wind power, and biofuels; abuse of human subjects in psychological and othe

Subjects

risk | risk | science | science | society | society | ethics | ethics | politics | politics | technology | technology | history | history | controversy | controversy | atomic | atomic | whistleblowing | whistleblowing | GMO | GMO | genetic engineering | genetic engineering | nuclear | nuclear | space exploration | space exploration | energy | energy | policy | policy | debate | debate | museum | museum | archeology | archeology | war | war | terrorism | terrorism | tradeoff | tradeoff | decision making | decision making | medicine | medicine | health care policy | health care policy | biotechnology | biotechnology | climate change | climate change | global warming | global warming | human subjects | human subjects

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.950J Engineering Biomedical Information: From Bioinformatics to Biosurveillance (MIT) HST.950J Engineering Biomedical Information: From Bioinformatics to Biosurveillance (MIT)

Description

This course provides an interdisciplinary introduction to the technological advances in biomedical informatics and their applications at the intersection of computer science and biomedical research. This course provides an interdisciplinary introduction to the technological advances in biomedical informatics and their applications at the intersection of computer science and biomedical research.

Subjects

biomedical informatics | biomedical informatics | bioinformatics | bioinformatics | biomedical research | biomedical research | biological computing | biological computing | biomedical computing | biomedical computing | computational genomics | computational genomics | genomics | genomics | microarrays | microarrays | proteomics | proteomics | pharmacogenomics | pharmacogenomics | genomic privacy | genomic privacy | clinical informatics | clinical informatics | biosurveillance | biosurveillance | privacy | privacy | biotechnology | biotechnology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.442 Molecular Structure of Biological Materials (BE.442) (MIT) 20.442 Molecular Structure of Biological Materials (BE.442) (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | protein | hydration | hydration | amino acid | amino acid | ECM | ECM | extracellular matrix | extracellular matrix | peptide | peptide | helix | helix | DNA | DNA | RNA | RNA | biomaterial | biomaterial | biotech | biotech | biotechnology | biotechnology | nanomaterial | nanomaterial | beta-sheet | beta-sheet | beta sheet | beta sheet | molecular structure | molecular structure | bioengineering | bioengineering | silk | silk | biomimetic | biomimetic | self-assembly | self-assembly | keratin | keratin | collagen | collagen | adhesive | adhesive | GFP | GFP | fluorescent | fluorescent | polymer | polymer | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.001 Technology in American History (MIT) STS.001 Technology in American History (MIT)

Description

This course will consider the ways in which technology, broadly defined, has contributed to the building of American society from colonial times to the present. This course has three primary goals: to train students to ask critical questions of both technology and the broader American culture of which it is a part; to provide an historical perspective with which to frame and address such questions; and to encourage students to be neither blind critics of new technologies, nor blind advocates for technologies in general, but thoughtful and educated participants in the democratic process. This course will consider the ways in which technology, broadly defined, has contributed to the building of American society from colonial times to the present. This course has three primary goals: to train students to ask critical questions of both technology and the broader American culture of which it is a part; to provide an historical perspective with which to frame and address such questions; and to encourage students to be neither blind critics of new technologies, nor blind advocates for technologies in general, but thoughtful and educated participants in the democratic process.

Subjects

colonization | colonization | Civil War | Civil War | World War II | World War II | Cold War | Cold War | industrialization | industrialization | mass production | mass production | craftsmanship | craftsmanship | transportation | transportation | Taylorism | Taylorism | aeronautics | aeronautics | systems approach | systems approach | computers | computers | control | control | automation | automation | nature | nature | popular culture | popular culture | terrorism | terrorism | engineering | engineering | hobbyist | hobbyist | communications | communications | Internet | Internet | machine age | machine age | Apollo program | Apollo program | biotechnology | biotechnology | environment | environment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-STS.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.014 Principles and Practice of Science Communication (MIT) STS.014 Principles and Practice of Science Communication (MIT)

Description

This course helps in developing skills as science communicators through projects and analysis of theoretical principles. Case studies explore the emergence of popular science communication over the past two centuries and consider the relationships among authors, audiences and media. Project topics are identified early in the term and students work with MIT Museum staff. Projects may include physical exhibits, practical demonstrations, or scripts for public programs. This course helps in developing skills as science communicators through projects and analysis of theoretical principles. Case studies explore the emergence of popular science communication over the past two centuries and consider the relationships among authors, audiences and media. Project topics are identified early in the term and students work with MIT Museum staff. Projects may include physical exhibits, practical demonstrations, or scripts for public programs.

Subjects

public understanding of science | public understanding of science | science writing | science writing | museum | museum | exhibit | exhibit | debate | debate | journalism | journalism | stem cell | stem cell | recombinant DNA | recombinant DNA | intelligent design | intelligent design | GMA | GMA | genetically modified food | genetically modified food | biotechnology | biotechnology | bioengineering | bioengineering | risk | risk | journal | journal | newspaper | newspaper | radio | radio | fraud | fraud | cloning | cloning | evolution | evolution | controversy | controversy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-STS.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.320 Environmental Conflict and Social Change (MIT) STS.320 Environmental Conflict and Social Change (MIT)

Description

This graduate-level class explores the complex interrelationships among humans and natural environments, focusing on non-western parts of the world in addition to Europe and the United States. It uses environmental conflict to draw attention to competing understandings and uses of "nature" as well as the local, national and transnational power relationships in which environmental interactions are embedded. In addition to utilizing a range of theoretical perspectives, this subject draws upon a series of ethnographic case studies of environmental conflicts in various parts of the world. This graduate-level class explores the complex interrelationships among humans and natural environments, focusing on non-western parts of the world in addition to Europe and the United States. It uses environmental conflict to draw attention to competing understandings and uses of "nature" as well as the local, national and transnational power relationships in which environmental interactions are embedded. In addition to utilizing a range of theoretical perspectives, this subject draws upon a series of ethnographic case studies of environmental conflicts in various parts of the world.

Subjects

Anthropology | Anthropology | complex interrelationships | complex interrelationships | humans | humans | natural environments | natural environments | conflict | conflict | access | access | land rights | land rights | hunting | hunting | fishing | fishing | environmental regulations | environmental regulations | scientific | scientific | popular | popular | knowledge | knowledge | biotechnology | biotechnology | hazardous waste | hazardous waste | social | social | economic | economic | political | political | environmental | environmental | stakes | stakes | forest | forest | agricultural | agricultural | marine | marine | urban | urban | cultural | cultural | historical | historical | power relationships | power relationships | local | local | national | national | international levels. nature | international levels. nature | European thought | European thought | theoretical paradigms | theoretical paradigms | ethnographic | ethnographic | East Africa | East Africa | South Asia | South Asia | Southeast Asia | Southeast Asia | Eastern Europe | Eastern Europe | North America | North America

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-STS.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (BE.462J) (MIT) 20.462J Molecular Principles of Biomaterials (BE.462J) (MIT)

Description

Analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, biosensors, and cell-guiding surfaces.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark or trademark of Microsoft Corporation in the U.S Analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, biosensors, and cell-guiding surfaces.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark or trademark of Microsoft Corporation in the U.S

Subjects

Analysis | Analysis | design | design | molecular scale | molecular scale | biological systems | biological systems | biotechnology | biotechnology | biomedical engineering | biomedical engineering | molecular interactions | molecular interactions | synthetic molecules | synthetic molecules | synthesis | synthesis | processing approaches | processing approaches | cell functions | cell functions | materials science | materials science | tissue engineering | tissue engineering | drug delivery | drug delivery | biosensors | biosensors | cell-guiding surfaces | cell-guiding surfaces | BE.462J | BE.462J | BE.462 | BE.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21A.500J Technology and Culture (MIT) 21A.500J Technology and Culture (MIT)

Description

This subject examines relationships among technology, culture, and politics in a range of social and historical settings. The class is organized around two topics: Identity and infrastructure, and will combine interactive lectures, film screenings, readings, and discussion. This subject examines relationships among technology, culture, and politics in a range of social and historical settings. The class is organized around two topics: Identity and infrastructure, and will combine interactive lectures, film screenings, readings, and discussion.

Subjects

21A.500 | 21A.500 | STS.075 | STS.075 | technology | technology | technology and culture | technology and culture | biotechnology | biotechnology | computers and the self | computers and the self | digital world | digital world | science and religion | science and religion | racial economy | racial economy | ethics | ethics | technoscience | technoscience | bioterrorism | bioterrorism | cloning | cloning | genetically modified food | genetically modified food | GMO | GMO | gender identity | gender identity | information age | information age

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.508 Genomics and Computational Biology (MIT) HST.508 Genomics and Computational Biology (MIT)

Description

Includes audio/video content: AV lectures. This course will assess the relationships among sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive, functional genomics analyses. Exercises will include algorithmic, statistical, database, and simulation approaches and practical applications to medicine, biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations will be critically addressed. In addition to the regular lecture sessions, supplementary sections are scheduled to address issues related to Perl, Mathematica and biology. Includes audio/video content: AV lectures. This course will assess the relationships among sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive, functional genomics analyses. Exercises will include algorithmic, statistical, database, and simulation approaches and practical applications to medicine, biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations will be critically addressed. In addition to the regular lecture sessions, supplementary sections are scheduled to address issues related to Perl, Mathematica and biology.

Subjects

sequence | sequence | structure | structure | function | function | complex biological networks | complex biological networks | quantative modeling | quantative modeling | functional genomics analyses | functional genomics analyses | algorithms | algorithms | statistics | statistics | database | database | simulation | simulation | applied medicine | applied medicine | biotechnology | biotechnology | drug discovery | drug discovery | computational biology | computational biology | genetic engineering | genetic engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.462J Molecular Principles of Biomaterials (MIT) BE.462J Molecular Principles of Biomaterials (MIT)

Description

Analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, biosensors, and cell-guiding surfaces.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark or trademark of Microsoft Corporation in the U.S Analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, biosensors, and cell-guiding surfaces.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.Microsoft® is a registered trademark or trademark of Microsoft Corporation in the U.S

Subjects

Analysis | Analysis | design | design | molecular scale | molecular scale | biological systems | biological systems | biotechnology | biotechnology | biomedical engineering | biomedical engineering | molecular interactions | molecular interactions | synthetic molecules | synthetic molecules | synthesis | synthesis | processing approaches | processing approaches | cell functions | cell functions | materials science | materials science | tissue engineering | tissue engineering | drug delivery | drug delivery | biosensors | biosensors | cell-guiding surfaces | cell-guiding surfaces | 3.962J | 3.962J | BE.462 | BE.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.442 Molecular Structure of Biological Materials (MIT) BE.442 Molecular Structure of Biological Materials (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | protein | hydration | hydration | amino acid | amino acid | ECM | ECM | extracellular matrix | extracellular matrix | peptide | peptide | helix | helix | DNA | DNA | RNA | RNA | biomaterial | biomaterial | biotech | biotech | biotechnology | biotechnology | nanomaterial | nanomaterial | beta-sheet | beta-sheet | beta sheet | beta sheet | molecular structure | molecular structure | bioengineering | bioengineering | silk | silk | biomimetic | biomimetic | self-assembly | self-assembly | keratin | keratin | collagen | collagen | adhesive | adhesive | GFP | GFP | fluorescent | fluorescent | polymer | polymer | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (MIT) 20.462J Molecular Principles of Biomaterials (MIT)

Description

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces. This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subjects

biomaterials | biomaterials | biomaterial engineering | biomaterial engineering | biotechnology | biotechnology | cell-guiding surface | cell-guiding surface | molecular biomaterials | molecular biomaterials | drug release | drug release | polymers | polymers | pulsatile release | pulsatile release | polymerization | polymerization | polyer erosion | polyer erosion | tissue engineering | tissue engineering | hydrogels | hydrogels | adhesion | adhesion | migration | migration | drug diffusion | drug diffusion | molecular switches | molecular switches | molecular motors | molecular motors | nanoparticles | nanoparticles | microparticles | microparticles | vaccines | vaccines | drug targeting | drug targeting | micro carriers | micro carriers | nano carriers | nano carriers | intracellular drug delivery | intracellular drug delivery | 20.462 | 20.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.442 Molecular Structure of Biological Materials (BE.442) (MIT) 20.442 Molecular Structure of Biological Materials (BE.442) (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | protein | hydration | hydration | amino acid | amino acid | ECM | ECM | extracellular matrix | extracellular matrix | peptide | peptide | helix | helix | DNA | DNA | RNA | RNA | biomaterial | biomaterial | biotech | biotech | biotechnology | biotechnology | nanomaterial | nanomaterial | beta-sheet | beta-sheet | beta sheet | beta sheet | molecular structure | molecular structure | bioengineering | bioengineering | silk | silk | biomimetic | biomimetic | self-assembly | self-assembly | keratin | keratin | collagen | collagen | adhesive | adhesive | GFP | GFP | fluorescent | fluorescent | polymer | polymer | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.510 Genomics, Computing, Economics, and Society (MIT) HST.510 Genomics, Computing, Economics, and Society (MIT)

Description

This course will focus on understanding aspects of modern technology displaying exponential growth curves and the impact on global quality of life through a weekly updated class project integrating knowledge and providing practical tools for political and business decision-making concerning new aspects of bioengineering, personalized medicine, genetically modified organisms, and stem cells. Interplays of economic, ethical, ecological, and biophysical modeling will be explored through multi-disciplinary teams of students, and individual brief reports. This course will focus on understanding aspects of modern technology displaying exponential growth curves and the impact on global quality of life through a weekly updated class project integrating knowledge and providing practical tools for political and business decision-making concerning new aspects of bioengineering, personalized medicine, genetically modified organisms, and stem cells. Interplays of economic, ethical, ecological, and biophysical modeling will be explored through multi-disciplinary teams of students, and individual brief reports.

Subjects

genomics | genomics | bioengineering | bioengineering | biological engineering | biological engineering | personalized medicine | personalized medicine | informatics | informatics | bioinformatics | bioinformatics | human genome | human genome | stem cells | stem cells | genetically modified organisms | genetically modified organisms | biophysics | biophysics | bioethics | bioethics | society | society | bioeconomics | bioeconomics | statistics | statistics | modeling | modeling | datamining | datamining | systems biology | systems biology | technology development | technology development | biotechnology | biotechnology | public policy | public policy | health policy | health policy | business | business | economics | economics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Analysis of Biomolecular and Cellular Systems (MIT) 20.320 Analysis of Biomolecular and Cellular Systems (MIT)

Description

This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling. This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

biological engineering | biological engineering | kinase | kinase | PyMOL | PyMOL | PyRosetta | PyRosetta | MATLAB | MATLAB | Michaelis-Menten | Michaelis-Menten | bioreactor | bioreactor | bromodomain | bromodomain | protein-ligand interactions | protein-ligand interactions | titration analysis | titration analysis | fractional separation | fractional separation | isothermal titration calorimetry | isothermal titration calorimetry | ITC | ITC | mass spectrometry | mass spectrometry | MS | MS | co-immunoprecipitation | co-immunoprecipitation | Co-IP | Co-IP | Forster resonance energy transfer | Forster resonance energy transfer | FRET | FRET | primary ligation assay | primary ligation assay | PLA | PLA | surface plasmon resonance | surface plasmon resonance | SPR | SPR | enzyme kinetics | enzyme kinetics | kinase engineering | kinase engineering | competitive inhibition | competitive inhibition | epidermal growth factor receptor | epidermal growth factor receptor | mitogen-activated protein kinase | mitogen-activated protein kinase | MAPK | MAPK | genome editing | genome editing | Imatinib | Imatinib | Gleevec | Gleevec | Glivec | Glivec | drug delivery | drug delivery | kinetics of molecular processes | kinetics of molecular processes | dynamics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | kinetics of cellular processes | dynamics of cellular processes | dynamics of cellular processes | intracellular scale | intracellular scale | extracellular scale | extracellular scale | and cell population scale | and cell population scale | biotechnology applications | biotechnology applications | gene regulation networks | gene regulation networks | nucleic acid hybridization | nucleic acid hybridization | signal transduction pathways | signal transduction pathways | cell populations in tissues | cell populations in tissues | cell populations in bioreactors | cell populations in bioreactors | experimental methods | experimental methods | quantitative analysis | quantitative analysis | computational modeling | computational modeling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.092 Bioinformatics and Proteomics (MIT) 6.092 Bioinformatics and Proteomics (MIT)

Description

This interdisciplinary course provides a hands-on approach to students in the topics of bioinformatics and proteomics. Lectures and labs cover sequence analysis, microarray expression analysis, Bayesian methods, control theory, scale-free networks, and biotechnology applications. Designed for those with a computational and/or engineering background, it will include current real-world examples, actual implementations, and engineering design issues. Where applicable, engineering issues from signal processing, network theory, machine learning, robotics and other domains will be expounded upon. This interdisciplinary course provides a hands-on approach to students in the topics of bioinformatics and proteomics. Lectures and labs cover sequence analysis, microarray expression analysis, Bayesian methods, control theory, scale-free networks, and biotechnology applications. Designed for those with a computational and/or engineering background, it will include current real-world examples, actual implementations, and engineering design issues. Where applicable, engineering issues from signal processing, network theory, machine learning, robotics and other domains will be expounded upon.

Subjects

bioinformatics | bioinformatics | proteomics | proteomics | sequence analysis | sequence analysis | microarray expression analysis | microarray expression analysis | Bayesian methods | Bayesian methods | control theory | control theory | scale-free networks | scale-free networks | biotechnology applications | biotechnology applications | real-world examples | real-world examples | actual implementations | actual implementations | engineering design issues | engineering design issues | signal processing | signal processing | network theory | network theory | machine learning | machine learning | robotics | robotics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21A.355J The Anthropology of Biology (MIT) 21A.355J The Anthropology of Biology (MIT)

Description

If the twentieth century was the century of physics, the twenty-first promises to be the century of biology. This subject examines the cultural, political, and economic dimensions of biology in the age of genomics, biotechnological enterprise, biodiversity conservation, pharmaceutical bioprospecting, and synthetic biology. Although we examine such social concerns as bioterrorism, genetic modification, and cloning, this is not a class in bioethics, but rather an anthropological inquiry into how the substances and explanations of biology — increasingly cellular, molecular, genetic, and informatic — are changing, and with them broader ideas about the relationship between "nature" and "culture." Looking at such cultural artifacts as cell lines, biodiversity databases, and artif If the twentieth century was the century of physics, the twenty-first promises to be the century of biology. This subject examines the cultural, political, and economic dimensions of biology in the age of genomics, biotechnological enterprise, biodiversity conservation, pharmaceutical bioprospecting, and synthetic biology. Although we examine such social concerns as bioterrorism, genetic modification, and cloning, this is not a class in bioethics, but rather an anthropological inquiry into how the substances and explanations of biology — increasingly cellular, molecular, genetic, and informatic — are changing, and with them broader ideas about the relationship between "nature" and "culture." Looking at such cultural artifacts as cell lines, biodiversity databases, and artif

Subjects

synthetic biology | synthetic biology | genetics | genetics | Charles Darwin | Charles Darwin | evolution | evolution | eugenics | eugenics | bioprospecting | bioprospecting | ethics | ethics | biodiversity | biodiversity | race | race | molecular biology | molecular biology | sociology of science | sociology of science | construction of identity | construction of identity | intersex | intersex | biotechnology | biotechnology | narratives and metaphors | narratives and metaphors

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21A.303J Anthropology of Biology (MIT) 21A.303J Anthropology of Biology (MIT)

Description

This course applies the tools of anthropology to examine biology in the age of genomics, biotechnological enterprise, biodiversity conservation, pharmaceutical bioprospecting, and synthetic biology. It examines such social concerns such as bioterrorism, genetic modification, and cloning. It offers an anthropological inquiry into how the substances and explanations of biology—ecological, organismic, cellular, molecular, genetic, informatic—are changing. It examines such artifacts as cell lines, biodiversity databases, and artificial life models, and using primary sources in biology, social studies of the life sciences, and literary and cinematic materials, and asks how we might answer Erwin Schrodinger's 1944 question, "What Is Life?" today. This course applies the tools of anthropology to examine biology in the age of genomics, biotechnological enterprise, biodiversity conservation, pharmaceutical bioprospecting, and synthetic biology. It examines such social concerns such as bioterrorism, genetic modification, and cloning. It offers an anthropological inquiry into how the substances and explanations of biology—ecological, organismic, cellular, molecular, genetic, informatic—are changing. It examines such artifacts as cell lines, biodiversity databases, and artificial life models, and using primary sources in biology, social studies of the life sciences, and literary and cinematic materials, and asks how we might answer Erwin Schrodinger's 1944 question, "What Is Life?" today.

Subjects

21A.303 | 21A.303 | STS.060 | STS.060 | biology | biology | anthropology of biology | anthropology of biology | biopolitics | biopolitics | bioethics | bioethics | biodiversity | biodiversity | biotechnology | biotechnology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.01SC Fundamentals of Biology (MIT) 7.01SC Fundamentals of Biology (MIT)

Description

Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality. Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.

Subjects

amino acids | amino acids | carboxyl group | carboxyl group | amino group | amino group | side chains | side chains | polar | polar | hydrophobic | hydrophobic | primary structure | primary structure | secondary structure | secondary structure | tertiary structure | tertiary structure | quaternary structure | quaternary structure | x-ray crystallography | x-ray crystallography | alpha helix | alpha helix | beta sheet | beta sheet | ionic bond | ionic bond | non-polar bond | non-polar bond | van der Waals interactions | van der Waals interactions | proton gradient | proton gradient | cyclic photophosphorylation | cyclic photophosphorylation | sunlight | sunlight | ATP | ATP | chlorophyll | chlorophyll | chlorophyll a | chlorophyll a | electrons | electrons | hydrogen sulfide | hydrogen sulfide | biosynthesis | biosynthesis | non-cyclic photophosphorylation | non-cyclic photophosphorylation | photosystem II | photosystem II | photosystem I | photosystem I | cyanobacteria | cyanobacteria | chloroplast | chloroplast | stroma | stroma | thylakoid membrane | thylakoid membrane | Genetics | Genetics | Mendel | Mendel | Mendel's Laws | Mendel's Laws | cloning | cloning | restriction enzymes | restriction enzymes | vector | vector | insert DNA | insert DNA | ligase | ligase | library | library | E.Coli | E.Coli | phosphatase | phosphatase | yeast | yeast | transformation | transformation | ARG1 gene | ARG1 gene | ARG1 mutant yeast | ARG1 mutant yeast | yeast wild-type | yeast wild-type | cloning by complementation | cloning by complementation | Human Beta Globin gene | Human Beta Globin gene | protein tetramer | protein tetramer | vectors | vectors | antibodies | antibodies | human promoter | human promoter | splicing | splicing | mRNA | mRNA | cDNA | cDNA | reverse transcriptase | reverse transcriptase | plasmid | plasmid | electrophoresis | electrophoresis | DNA sequencing | DNA sequencing | primer | primer | template | template | capillary tube | capillary tube | laser detector | laser detector | human genome project | human genome project | recombinant DNA | recombinant DNA | clone | clone | primer walking | primer walking | subcloning | subcloning | computer assembly | computer assembly | shotgun sequencing | shotgun sequencing | open reading frame | open reading frame | databases | databases | polymerase chain reaction (PCR) | polymerase chain reaction (PCR) | polymerase | polymerase | nucleotides | nucleotides | Thermus aquaticus | Thermus aquaticus | Taq polymerase | Taq polymerase | thermocycler | thermocycler | resequencing | resequencing | in vitro fertilization | in vitro fertilization | pre-implantation diagnostics | pre-implantation diagnostics | forensics | forensics | genetic engineering | genetic engineering | DNA sequences | DNA sequences | therapeutic proteins | therapeutic proteins | E. coli | E. coli | disease-causing mutations | disease-causing mutations | cleavage of DNA | cleavage of DNA | bacterial transformation | bacterial transformation | recombinant DNA revolution | recombinant DNA revolution | biotechnology industry | biotechnology industry | Robert Swanson | Robert Swanson | toxin gene | toxin gene | pathogenic bacterium | pathogenic bacterium | biomedical research | biomedical research | S. Pyogenes | S. Pyogenes | origin of replication | origin of replication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.346 Virus-host Interactions in Infectious Diseases (MIT) 7.346 Virus-host Interactions in Infectious Diseases (MIT)

Description

Co-evolution and adaptation between viruses and humans are often portrayed as a zero-sum biological arms race. Viruses enter host cells equipped with an array of mechanisms to evade the host defense responses and replicate. The rapid rate of mutation of viruses permits evolution of various methodologies for infection, which in turn drive development of non-specific but highly effective host mechanisms to restrict infection. This class will discuss the varied solutions each side has developed as a means for survival. We will use examples drawn from human disease-causing pathogens that contribute seriously to the global health burden, including HIV, influenza and dengue virus. Primary research papers will be discussed to help students learn to pose scientific questions and design and conduct Co-evolution and adaptation between viruses and humans are often portrayed as a zero-sum biological arms race. Viruses enter host cells equipped with an array of mechanisms to evade the host defense responses and replicate. The rapid rate of mutation of viruses permits evolution of various methodologies for infection, which in turn drive development of non-specific but highly effective host mechanisms to restrict infection. This class will discuss the varied solutions each side has developed as a means for survival. We will use examples drawn from human disease-causing pathogens that contribute seriously to the global health burden, including HIV, influenza and dengue virus. Primary research papers will be discussed to help students learn to pose scientific questions and design and conduct

Subjects

virus | virus | host | host | infection | infection | protein-protein interactions | protein-protein interactions | host mimicry | host mimicry | intra-cellular trafficking | intra-cellular trafficking | host-cell machinery | host-cell machinery | signaling pathways | signaling pathways | antiviral proteins | antiviral proteins | HIV | HIV | influenza | influenza | dengue virus | dengue virus | biotechnology | biotechnology | vaccine development | vaccine development | host sensors | host sensors | IFN production | IFN production | Secreted IFN | Secreted IFN | filoviruses | filoviruses | hCMV | hCMV | IFITM proteins | IFITM proteins

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.341 Harnessing the Biosphere: Natural Products and Biotechnology (MIT) 7.341 Harnessing the Biosphere: Natural Products and Biotechnology (MIT)

Description

What do the organisms of the biosphere, specifically microorganisms, have to offer to biotechnological endeavors? In this course we will focus on the production of biomolecules using microbial systems. We will discuss potential growth substrates (such as agricultural waste and carbon dioxide) that can be used and learn about both established and cutting-edge manipulation techniques in the field of synthetic biology. We will also cover the production of biofuels, bioplastics, amino acids (e.g. lysine), food additives (e.g. monosodium glutamate, MSG), specialty chemicals (e.g. succinate), and biopharmaceuticals (e.g. plasmids for gene therapy). This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an What do the organisms of the biosphere, specifically microorganisms, have to offer to biotechnological endeavors? In this course we will focus on the production of biomolecules using microbial systems. We will discuss potential growth substrates (such as agricultural waste and carbon dioxide) that can be used and learn about both established and cutting-edge manipulation techniques in the field of synthetic biology. We will also cover the production of biofuels, bioplastics, amino acids (e.g. lysine), food additives (e.g. monosodium glutamate, MSG), specialty chemicals (e.g. succinate), and biopharmaceuticals (e.g. plasmids for gene therapy). This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an

Subjects

microorganisms | microorganisms | biomolecules | biomolecules | microbial systems | microbial systems | synthetic biology | synthetic biology | biofuels | biofuels | bioplastics | bioplastics | amino acids | amino acids | lysine | lysine | food additives | food additives | monosodium glutamate (MSG) | monosodium glutamate (MSG) | specialty chemicals | specialty chemicals | succinate | succinate | biopharmaceuticals | biopharmaceuticals | enzymes | enzymes | antibiotics and biocompatible materials | antibiotics and biocompatible materials | microbial biotechnology | microbial biotechnology | genetic engineering | genetic engineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata