Searching for brittle fracture : 9 results found | RSS Feed for this search

22.314J Structural Mechanics in Nuclear Power Technology (MIT) 22.314J Structural Mechanics in Nuclear Power Technology (MIT)

Description

This course deals with structural components in nuclear power plant systems, their functional purposes, operating conditions, and mechanical-structural design requirements. It combines mechanics techniques with models of material behavior to determine adequacy of component design. Considerations include mechanical loading, brittle fracture, in-elastic behavior, elevated temperatures, neutron irradiation, and seismic effects.This class was also offered in Course 13 (Department of Ocean Engineering) as 13.14J. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and the 13.14J designation was dropped in lieu of 2.084J. This course deals with structural components in nuclear power plant systems, their functional purposes, operating conditions, and mechanical-structural design requirements. It combines mechanics techniques with models of material behavior to determine adequacy of component design. Considerations include mechanical loading, brittle fracture, in-elastic behavior, elevated temperatures, neutron irradiation, and seismic effects.This class was also offered in Course 13 (Department of Ocean Engineering) as 13.14J. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and the 13.14J designation was dropped in lieu of 2.084J.

Subjects

nuclear power plant systems | nuclear power plant systems | structure | functions | operating conditions and mechanical structural design requirements | structure | functions | operating conditions and mechanical structural design requirements | modelling | modelling | component design | component design | mechanical loading | mechanical loading | brittle fracture | inelastic behaviour | brittle fracture | inelastic behaviour | elevated temperature | elevated temperature | neutron irradiation | neutron irradiation | seismic effect | seismic effect | structure | function | operating conditions | and mechanical-structural design requirements | structure | function | operating conditions | and mechanical-structural design requirements | brittle fracture | inelastic behavior | brittle fracture | inelastic behavior | 13.14J | 13.14J | 22.314 | 22.314 | 1.56 | 1.56 | 2.084 | 2.084 | 13.14 | 13.14

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.314J Structural Mechanics in Nuclear Power Technology (MIT) 22.314J Structural Mechanics in Nuclear Power Technology (MIT)

Description

This course deals with structural components in nuclear power plant systems, their functional purposes, operating conditions, and mechanical-structural design requirements. It combines mechanics techniques with models of material behavior to determine adequacy of component design. Considerations include mechanical loading, brittle fracture, in-elastic behavior, elevated temperatures, neutron irradiation, and seismic effects. This course deals with structural components in nuclear power plant systems, their functional purposes, operating conditions, and mechanical-structural design requirements. It combines mechanics techniques with models of material behavior to determine adequacy of component design. Considerations include mechanical loading, brittle fracture, in-elastic behavior, elevated temperatures, neutron irradiation, and seismic effects.

Subjects

nuclear power plant systems | nuclear power plant systems | structure | structure | function | function | operating conditions | operating conditions | and mechanical-structural design requirements | and mechanical-structural design requirements | modeling | modeling | component design | component design | mechanical loading | mechanical loading | brittle fracture | brittle fracture | inelastic behavior | inelastic behavior | elevated temperatures | elevated temperatures | neutron irradiation | neutron irradiation | seismic effects | seismic effects

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.314J Structural Mechanics in Nuclear Power Technology (MIT)

Description

This course deals with structural components in nuclear power plant systems, their functional purposes, operating conditions, and mechanical-structural design requirements. It combines mechanics techniques with models of material behavior to determine adequacy of component design. Considerations include mechanical loading, brittle fracture, in-elastic behavior, elevated temperatures, neutron irradiation, and seismic effects.This class was also offered in Course 13 (Department of Ocean Engineering) as 13.14J. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and the 13.14J designation was dropped in lieu of 2.084J.

Subjects

nuclear power plant systems | structure | functions | operating conditions and mechanical structural design requirements | modelling | component design | mechanical loading | brittle fracture | inelastic behaviour | elevated temperature | neutron irradiation | seismic effect | structure | function | operating conditions | and mechanical-structural design requirements | brittle fracture | inelastic behavior | 13.14J | 22.314 | 1.56 | 2.084 | 13.14

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.524 Mechanical Properties of Rocks (MIT) 12.524 Mechanical Properties of Rocks (MIT)

Description

12.524 is a survey of the mechanical behavior of rocks in natural geologic situations. Topics will include a brief survey of field evidence of rock deformation, physics of plastic deformation in minerals, brittle fracture and sliding, and pressure-solution processes. We will compare results of field petrologic and structural studies to data from experimental structural geology. 12.524 is a survey of the mechanical behavior of rocks in natural geologic situations. Topics will include a brief survey of field evidence of rock deformation, physics of plastic deformation in minerals, brittle fracture and sliding, and pressure-solution processes. We will compare results of field petrologic and structural studies to data from experimental structural geology.

Subjects

mechanical behavior of rocks | mechanical behavior of rocks | rock deformation | rock deformation | plastic deformation | plastic deformation | minerals | minerals | rock mechanics | rock mechanics | brittle fracture | brittle fracture | pressure-solution processes | pressure-solution processes | field evidence | field evidence | experimental structural geology | experimental structural geology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2403: Applied Fracture Mechanics

Description

This lecture demonstrates how to teach the principles and concepts of fracture mechanics as well as provide recommendations for practical applications; it provides necessary information for fatigue life estimations on the basis of fracture mechanics as a complementary method to the S-N concept. Background in engineering, materials and fatigue is required.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | fatigue | fracture | notch toughness | brittle fracture | performance level | toughness | crack size | stress level | stress intensity factors | deformation | crack tip | superposition | linear-elastic fracture mechanics | kic | astm-e399 test method | elastic-plastic fracture mechanics | crack opening displacement | test method bs 5762 | r-curves | astm-e561 | astm-e813 | astm-e1152 | j-r curves | jic | free surface correction fs | crack shape correction fe | finite plate dimension correction fw | correction factors for stress gradient fg | crack geometry | evaluation | welded coverplate | web stiffener | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Structures and materials : section 5 major structural materials for aeronautical and automotive structures : presentation transcript

Description

This open educational resource was released through the Higher Education Academy Engineering Subject Centre Open Engineering Resources Pilot project. The project was funded by HEFCE and the JISC/HE Academy UKOER programme.

Subjects

ukoer | engscoer | cc-by | engcetl | loughborough university | higher education | learning | loughboroughunioer | engineering | tta104 | ductile fracture | materials | density chart | structural materials | aeronautic structures | strength | advanced fibre-reinforced polymetric composites | brittle fracture | aluminium alloys | fractures | stiffness | steels | alloys | automotive structures | Engineering | H000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.524 Mechanical Properties of Rocks (MIT)

Description

12.524 is a survey of the mechanical behavior of rocks in natural geologic situations. Topics will include a brief survey of field evidence of rock deformation, physics of plastic deformation in minerals, brittle fracture and sliding, and pressure-solution processes. We will compare results of field petrologic and structural studies to data from experimental structural geology.

Subjects

mechanical behavior of rocks | rock deformation | plastic deformation | minerals | rock mechanics | brittle fracture | pressure-solution processes | field evidence | experimental structural geology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2403: Applied Fracture Mechanics

Description

This lecture demonstrates how to teach the principles and concepts of fracture mechanics as well as provide recommendations for practical applications; it provides necessary information for fatigue life estimations on the basis of fracture mechanics as a complementary method to the S-N concept. Background in engineering, materials and fatigue is required.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | fatigue | fracture | notch toughness | brittle fracture | performance level | toughness | crack size | stress level | stress intensity factors | deformation | crack tip | superposition | linear-elastic fracture mechanics | KIc | ASTM-E399 test method | elastic-plastic fracture mechanics | crack opening displacement | test method BS 5762 | R-curves | ASTM-E561 | ASTM-E813 | ASTM-E1152 | J-R curves | JIc | free surface correction Fs | crack shape correction Fe | finite plate dimension correction Fw | correction factors for stress gradient Fg | crack geometry | evaluation | welded coverplate | web stiffener | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.314J Structural Mechanics in Nuclear Power Technology (MIT)

Description

This course deals with structural components in nuclear power plant systems, their functional purposes, operating conditions, and mechanical-structural design requirements. It combines mechanics techniques with models of material behavior to determine adequacy of component design. Considerations include mechanical loading, brittle fracture, in-elastic behavior, elevated temperatures, neutron irradiation, and seismic effects.

Subjects

nuclear power plant systems | structure | function | operating conditions | and mechanical-structural design requirements | modeling | component design | mechanical loading | brittle fracture | inelastic behavior | elevated temperatures | neutron irradiation | seismic effects

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata