Searching for carbon : 677 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

12.000 Solving Complex Problems (MIT) 12.000 Solving Complex Problems (MIT)

Description

12.000 Solving Complex Problems is designed to provide students the opportunity to work as part of a team to propose solutions to a complex problem that requires an interdisciplinary approach. For the students of the class of 2013, 12.000 will revolve around the issues associated with what we can and must do about the steadily increasing amounts CO2 in Earth’s atmosphere.Each year's class explores a different problem in detail through the study of complementary case histories and the development of creative solution strategies. It includes training in Web site development, effective written and oral communication, and team building. Initially developed with major financial support from the d'Arbeloff Fund for Excellence in Education, 12.000 is designed to enhance the freshman exper 12.000 Solving Complex Problems is designed to provide students the opportunity to work as part of a team to propose solutions to a complex problem that requires an interdisciplinary approach. For the students of the class of 2013, 12.000 will revolve around the issues associated with what we can and must do about the steadily increasing amounts CO2 in Earth’s atmosphere.Each year's class explores a different problem in detail through the study of complementary case histories and the development of creative solution strategies. It includes training in Web site development, effective written and oral communication, and team building. Initially developed with major financial support from the d'Arbeloff Fund for Excellence in Education, 12.000 is designed to enhance the freshman exper

Subjects

carbon sequestration | carbon sequestration | atmospheric carbon dioxide | atmospheric carbon dioxide | greenhouse gas emissions | greenhouse gas emissions | carbon capture | carbon capture | carbon transport | carbon transport | integrated global solution | integrated global solution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.085 Seminar in Environmental Science (MIT) 12.085 Seminar in Environmental Science (MIT)

Description

Required for all Earth, Atmospheric, and Planetary Sciences majors in the Environmental Science track, this course is an introduction to current research in the field. It stresses the integration of central scientific concepts in environmental policy making and the chemistry, biology, and geology environmental science tracks. It revisits the selected core themes for students who have already acquired a basic understanding of environmental science concepts. The topic for this term is Global Respiration. Required for all Earth, Atmospheric, and Planetary Sciences majors in the Environmental Science track, this course is an introduction to current research in the field. It stresses the integration of central scientific concepts in environmental policy making and the chemistry, biology, and geology environmental science tracks. It revisits the selected core themes for students who have already acquired a basic understanding of environmental science concepts. The topic for this term is Global Respiration.

Subjects

Environmental Science | Environmental Science | global respiration | global respiration | carbon dioxide | carbon dioxide | carbon cycle | carbon cycle | global warming | global warming | evolution | evolution | complex life | complex life

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.742 Marine Chemistry (MIT) 12.742 Marine Chemistry (MIT)

Description

Includes audio/video content: AV selected lectures. This course is an introduction to chemical oceanography. It describes reservoir models and residence time, major ion composition of seawater, inputs to and outputs from the ocean via rivers, the atmosphere, and the sea floor. Biogeochemical cycling within the oceanic water column and sediments, emphasizing the roles played by the formation, transport, and alteration of oceanic particles and the effects that these processes have on seawater composition. Cycles of carbon, nitrogen, phosphorus, oxygen, and sulfur. Uptake of anthropogenic carbon dioxide by the ocean. Material presented through lectures and student-led presentation and discussion of recent papers. Includes audio/video content: AV selected lectures. This course is an introduction to chemical oceanography. It describes reservoir models and residence time, major ion composition of seawater, inputs to and outputs from the ocean via rivers, the atmosphere, and the sea floor. Biogeochemical cycling within the oceanic water column and sediments, emphasizing the roles played by the formation, transport, and alteration of oceanic particles and the effects that these processes have on seawater composition. Cycles of carbon, nitrogen, phosphorus, oxygen, and sulfur. Uptake of anthropogenic carbon dioxide by the ocean. Material presented through lectures and student-led presentation and discussion of recent papers.

Subjects

chemical oceanography | chemical oceanography | biogeochemical cycling | biogeochemical cycling | water column processes | water column processes | ocean particles | ocean particles | seawater composition | seawater composition | ocean particle transport | ocean particle transport | carbon | carbon | oxygen | oxygen | nitrogen | nitrogen | phosphorus | phosphorus | sulfur | sulfur | carbon dioxide | carbon dioxide | sediment chemistry | sediment chemistry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.512 Synthetic Organic Chemistry II (MIT) 5.512 Synthetic Organic Chemistry II (MIT)

Description

This course focuses on general methods and strategies for the synthesis of complex organic molecules. Emphasis is on strategies for stereoselective synthesis, including stereocontrolled synthesis of complex acyclic compounds. This course focuses on general methods and strategies for the synthesis of complex organic molecules. Emphasis is on strategies for stereoselective synthesis, including stereocontrolled synthesis of complex acyclic compounds.

Subjects

synthetic organic chemistry | synthetic organic chemistry | synthesis | synthesis | complex organic molecules | complex organic molecules | stereoselective synthesis | stereoselective synthesis | acyclic compounds | acyclic compounds | stereocontrolled synthesis | stereocontrolled synthesis | stereocontrolled alkylation | stereocontrolled alkylation | stereocontrolled conjugate addition | stereocontrolled conjugate addition | carbonyls | carbonyls | aldol reactions | aldol reactions | carbonyl reduction | carbonyl reduction | alkene reduction | alkene reduction | hydroboration | hydroboration | dihydroxylation | dihydroxylation | epoxidation | epoxidation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.479J Water and Sanitation Infrastructure in Developing Countries (MIT) 11.479J Water and Sanitation Infrastructure in Developing Countries (MIT)

Description

This course deals with the principles of infrastructure planning in developing countries, with a focus on appropriate and sustainable technologies for water and sanitation. It also incorporates technical, socio-cultural, public health, and economic factors into the planning and design of water and sanitation systems. Upon completion, students will be able to plan simple, yet reliable, water supply and sanitation systems for developing countries that are compatible with local customs and available human and material resources. Graduate and upper division students from any department who are interested in international development at the grassroots level are encouraged to participate in this interdisciplinary subject. Acknowledgment This course was jointly developed by Earthea Nance and Sus This course deals with the principles of infrastructure planning in developing countries, with a focus on appropriate and sustainable technologies for water and sanitation. It also incorporates technical, socio-cultural, public health, and economic factors into the planning and design of water and sanitation systems. Upon completion, students will be able to plan simple, yet reliable, water supply and sanitation systems for developing countries that are compatible with local customs and available human and material resources. Graduate and upper division students from any department who are interested in international development at the grassroots level are encouraged to participate in this interdisciplinary subject. Acknowledgment This course was jointly developed by Earthea Nance and Sus

Subjects

chemical oceanography | chemical oceanography | biogeochemical cycling | biogeochemical cycling | water column processes | water column processes | ocean particles | ocean particles | seawater composition | seawater composition | ocean particle transport | ocean particle transport | carbon | carbon | oxygen | oxygen | nitrogen | nitrogen | phosphorus | phosphorus | sulfur | sulfur | carbon dioxide | carbon dioxide | sediment chemistry | sediment chemistry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-11.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.007 Geobiology (MIT) 12.007 Geobiology (MIT)

Description

The interactive Earth system: Biology in geologic, environmental and climate change throughout Earth history. Since life began it has continually shaped and re-shaped the atmosphere, hydrosphere, cryosphere and the solid earth. Introduces the concept of "life as a geological agent" and examines the interaction between biology and the earth system during the roughly 4 billion years since life first appeared. Topics include the origin of the solar system and the early Earth atmosphere; the origin and evolution of life and its influence on climate up through and including the modern age and the problem of global warming; the global carbon cycle; and astrobiology. The interactive Earth system: Biology in geologic, environmental and climate change throughout Earth history. Since life began it has continually shaped and re-shaped the atmosphere, hydrosphere, cryosphere and the solid earth. Introduces the concept of "life as a geological agent" and examines the interaction between biology and the earth system during the roughly 4 billion years since life first appeared. Topics include the origin of the solar system and the early Earth atmosphere; the origin and evolution of life and its influence on climate up through and including the modern age and the problem of global warming; the global carbon cycle; and astrobiology.

Subjects

Big Bang | Big Bang | carbon cycle | carbon cycle | geobiochemistry | geobiochemistry | Solar System formation | Solar System formation | evolution | evolution | isotopic analysis: climate | isotopic analysis: climate | climate change | climate change | Snowball earth | Snowball earth | mesozoic | mesozoic | proterozoic | proterozoic | mass extinctions | mass extinctions | paleoclimate | paleoclimate | antiquity of life | antiquity of life | carbon dating | carbon dating | origin of life | origin of life | phylogenic trees | phylogenic trees

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.007 Geobiology (MIT) 12.007 Geobiology (MIT)

Description

This course introduces parallel evolution of life and the environment. Life processes are influenced by chemical and physical processes in the atmosphere, hydrosphere, cryosphere and the solid earth. In turn, life can influence chemical and physical processes on our planet. This course introduces the concept of life as a geological agent and examines the interaction between biology and the earth system during the roughly four billion years since life first appeared. This course introduces parallel evolution of life and the environment. Life processes are influenced by chemical and physical processes in the atmosphere, hydrosphere, cryosphere and the solid earth. In turn, life can influence chemical and physical processes on our planet. This course introduces the concept of life as a geological agent and examines the interaction between biology and the earth system during the roughly four billion years since life first appeared.

Subjects

carbon cycle | carbon cycle | isotopic analysis | isotopic analysis | geobiochemistry | geobiochemistry | climate | climate | climate change | climate change | Snowball earth | Snowball earth | mesozoic | mesozoic | proterozoic | proterozoic | mass extinctions | mass extinctions | paleoclimate | paleoclimate | antiquity of life | antiquity of life | carbon dating | carbon dating | origin of life | origin of life | phylogenic trees | phylogenic trees

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.007 Geobiology (MIT) 12.007 Geobiology (MIT)

Description

This course introduces the parallel evolution of life and the environment. Life processes are influenced by chemical and physical processes in the atmosphere, hydrosphere, cryosphere and the solid earth. In turn, life can influence chemical and physical processes on our planet. This course explores the concept of life as a geological agent and examines the interaction between biology and the earth system during the roughly 4 billion years since life first appeared. This course introduces the parallel evolution of life and the environment. Life processes are influenced by chemical and physical processes in the atmosphere, hydrosphere, cryosphere and the solid earth. In turn, life can influence chemical and physical processes on our planet. This course explores the concept of life as a geological agent and examines the interaction between biology and the earth system during the roughly 4 billion years since life first appeared.

Subjects

carbon cycle | carbon cycle | isotopic analysis | isotopic analysis | geobiochemistry | geobiochemistry | climate | climate | Snowball earth | Snowball earth | mesozoic | mesozoic | proterozoic | proterozoic | mass extinctions | mass extinctions | paleoclimate | paleoclimate | antiquity of life | antiquity of life | carbon dating | carbon dating | origin of life | origin of life | phylogenic trees | phylogenic trees

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.000 Solving Complex Problems (MIT)

Description

12.000 Solving Complex Problems is designed to provide students the opportunity to work as part of a team to propose solutions to a complex problem that requires an interdisciplinary approach. For the students of the class of 2013, 12.000 will revolve around the issues associated with what we can and must do about the steadily increasing amounts CO2 in Earth’s atmosphere.Each year's class explores a different problem in detail through the study of complementary case histories and the development of creative solution strategies. It includes training in Web site development, effective written and oral communication, and team building. Initially developed with major financial support from the d'Arbeloff Fund for Excellence in Education, 12.000 is designed to enhance the freshman exper

Subjects

carbon sequestration | atmospheric carbon dioxide | greenhouse gas emissions | carbon capture | carbon transport | integrated global solution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Carbon-carbon composite

Description

Carbon-carbon composites are manufactured from continuous carbon fibres which are woven in a two or three dimensional pattern. The fibres are then impregnated with a polymeric resin. After the component has been shaped and cured the matrix is pyrolysed by heating in an inert atmosphere. This converts the matrix to carbon chain molecules which are densified by further heat treatments. The resulting composite consists of the original carbon fibres in a carbon matrix. Carbon-carbon composites have low density, high strength and high modulus. These properties are retained to temperatures above 2000C. Creep resistance and toughness are also high, and the high thermal conductivity and low thermal expansion coefficient provide thermal shock resistance. The woven structure of this composite can

Subjects

carbon-carbon composite | composite material | polymeric resin | pyrolysis | toughness | woven continuous carbon fibres | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Carbon-carbon composite

Description

Carbon-carbon composites are manufactured from continuous carbon fibres which are woven in a two or three dimensional pattern. The fibres are then impregnated with a polymeric resin. After the component has been shaped and cured the matrix is pyrolysed by heating in an inert atmosphere. This converts the matrix to carbon chain molecules which are densified by further heat treatments. The resulting composite consists of the original carbon fibres in a carbon matrix. Carbon-carbon composites have low density, high strength and high modulus. These properties are retained to temperatures above 2000C. Creep resistance and toughness are also high, and the high thermal conductivity and low thermal expansion coefficient provide thermal shock resistance. The woven structure of this composite can

Subjects

carbon-carbon composite | composite material | polymeric resin | pyrolysis | toughness | woven continuous carbon fibres | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Carbon-carbon composite

Description

Carbon-carbon composites are manufactured from continuous carbon fibres which are woven in a two or three dimensional pattern. The fibres are then impregnated with a polymeric resin. After the component has been shaped and cured the matrix is pyrolysed by heating in an inert atmosphere. This converts the matrix to carbon chain molecules which are densified by further heat treatments. The resulting composite consists of the original carbon fibres in a carbon matrix. Carbon-carbon composites have low density, high strength and high modulus. These properties are retained to temperatures above 2000C. Creep resistance and toughness are also high, and the high thermal conductivity and low thermal expansion coefficient provide thermal shock resistance. The woven structure of this composite can

Subjects

carbon-carbon composite | composite material | polymeric resin | pyrolysis | toughness | woven continuous carbon fibres | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Carbon-carbon composite

Description

Carbon-carbon composites are manufactured from continuous carbon fibres which are woven in a two or three dimensional pattern. The fibres are then impregnated with a polymeric resin. After the component has been shaped and cured the matrix is pyrolysed by heating in an inert atmosphere. This converts the matrix to carbon chain molecules which are densified by further heat treatments. The resulting composite consists of the original carbon fibres in a carbon matrix. Carbon-carbon composites have low density, high strength and high modulus. These properties are retained to temperatures above 2000C. Creep resistance and toughness are also high, and the high thermal conductivity and low thermal expansion coefficient provide thermal shock resistance. The woven structure of this composite can

Subjects

carbon-carbon composite | composite material | polymeric resin | pyrolysis | toughness | woven continuous carbon fibres | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Carbon-carbon composite

Description

Carbon-carbon composites are manufactured from continuous carbon fibres which are woven in a two or three dimensional pattern. The fibres are then impregnated with a polymeric resin. After the component has been shaped and cured the matrix is pyrolysed by heating in an inert atmosphere. This converts the matrix to carbon chain molecules which are densified by further heat treatments. The resulting composite consists of the original carbon fibres in a carbon matrix. Carbon-carbon composites have low density, high strength and high modulus. These properties are retained to temperatures above 2000C. Creep resistance and toughness are also high, and the high thermal conductivity and low thermal expansion coefficient provide thermal shock resistance. The woven structure of this composite can

Subjects

carbon-carbon composite | composite material | polymeric resin | pyrolysis | toughness | woven continuous carbon fibres | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

[Carbon Black Facility, Railroad Tracks, United and Columbia Carbon Plants, Fortune Magazine]

Description

Subjects

pollution | warehouses | railroadtracks | industrialfacilities | scientificequipment | chemicalindustry | timewarnerinc | vision:mountain=094 | acetyleneblack | carbonblackindustry | vision:clouds=099 | vision:sky=096 | vision:outdoor=0865 | unitedcarboncompany | columbiacarbonblackcompany

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Carbon-carbon composite

Description

Carbon-carbon composites are manufactured from continuous carbon fibres which are woven in a two or three dimensional pattern. The fibres are then impregnated with a polymeric resin. After the component has been shaped and cured the matrix is pyrolysed by heating in an inert atmosphere. This converts the matrix to carbon chain molecules which are densified by further heat treatments. The resulting composite consists of the original carbon fibres in a carbon matrix. Carbon-carbon composites have low density, high strength and high modulus. These properties are retained to temperatures above 2000°C. Creep resistance and toughness are also high, and the high thermal conductivity and low thermal expansion coefficient provide thermal shock resistance. The woven structure of this composite can

Subjects

carbon-carbon composite | composite material | polymeric resin | pyrolysis | toughness | woven continuous carbon fibres | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Carbon-carbon composite

Description

Carbon-carbon composites are manufactured from continuous carbon fibres which are woven in a two or three dimensional pattern. The fibres are then impregnated with a polymeric resin. After the component has been shaped and cured the matrix is pyrolysed by heating in an inert atmosphere. This converts the matrix to carbon chain molecules which are densified by further heat treatments. The resulting composite consists of the original carbon fibres in a carbon matrix. Carbon-carbon composites have low density, high strength and high modulus. These properties are retained to temperatures above 2000°C. Creep resistance and toughness are also high, and the high thermal conductivity and low thermal expansion coefficient provide thermal shock resistance. The woven structure of this composite can

Subjects

carbon-carbon composite | composite material | polymeric resin | pyrolysis | toughness | woven continuous carbon fibres | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Carbon-carbon composite

Description

Carbon-carbon composites are manufactured from continuous carbon fibres which are woven in a two or three dimensional pattern. The fibres are then impregnated with a polymeric resin. After the component has been shaped and cured the matrix is pyrolysed by heating in an inert atmosphere. This converts the matrix to carbon chain molecules which are densified by further heat treatments. The resulting composite consists of the original carbon fibres in a carbon matrix. Carbon-carbon composites have low density, high strength and high modulus. These properties are retained to temperatures above 2000°C. Creep resistance and toughness are also high, and the high thermal conductivity and low thermal expansion coefficient provide thermal shock resistance. The woven structure of this composite can

Subjects

carbon-carbon composite | composite material | polymeric resin | pyrolysis | toughness | woven continuous carbon fibres | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Carbon-carbon composite

Description

Carbon-carbon composites are manufactured from continuous carbon fibres which are woven in a two or three dimensional pattern. The fibres are then impregnated with a polymeric resin. After the component has been shaped and cured the matrix is pyrolysed by heating in an inert atmosphere. This converts the matrix to carbon chain molecules which are densified by further heat treatments. The resulting composite consists of the original carbon fibres in a carbon matrix. Carbon-carbon composites have low density, high strength and high modulus. These properties are retained to temperatures above 2000°C. Creep resistance and toughness are also high, and the high thermal conductivity and low thermal expansion coefficient provide thermal shock resistance. The woven structure of this composite can

Subjects

carbon-carbon composite | composite material | polymeric resin | pyrolysis | toughness | woven continuous carbon fibres | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Carbon-carbon composite

Description

Carbon-carbon composites are manufactured from continuous carbon fibres which are woven in a two or three dimensional pattern. The fibres are then impregnated with a polymeric resin. After the component has been shaped and cured the matrix is pyrolysed by heating in an inert atmosphere. This converts the matrix to carbon chain molecules which are densified by further heat treatments. The resulting composite consists of the original carbon fibres in a carbon matrix. Carbon-carbon composites have low density, high strength and high modulus. These properties are retained to temperatures above 2000°C. Creep resistance and toughness are also high, and the high thermal conductivity and low thermal expansion coefficient provide thermal shock resistance. The woven structure of this composite can

Subjects

carbon-carbon composite | composite material | polymeric resin | pyrolysis | toughness | woven continuous carbon fibres | doitpoms | university of cambridge | micrograph | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Tensile failure surface of a carbon fibre composite

Description

This is from the region of the fracture surface which was in tension. The fibres show clean, brittle fracture surfaces (with no fibrillation or distortion and little distortion of the matrix) and have broken at varying lengths and hence some stick out while others have left holes in the matrix. This is indicative of fibre pull-out having occurred after an initial failure of the matrix, followed by failure of the fibres themselves. This is a toughening mechanism in fibre reinforced composites. It is also involved in composite crack stopping properties; each fibre has briefly slowed the progress of the crack by opening it up along the weak fibre-matrix interface and hence blunting the crack tip. The crack therefore advances relatively slowly, with much lateral meandering.

Subjects

alignment | carbon | carbon fibres | CFC | composite material | epoxy | fibre | fracture | neutral axis | polymer composite | pull-out | reinforcement | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.76 Multi-Scale System Design (MIT) 2.76 Multi-Scale System Design (MIT)

Description

Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials

Subjects

scale | scale | complexity | complexity | nano | micro | meso | or macro-scale | nano | micro | meso | or macro-scale | kinematics | kinematics | metrology | metrology | engineering modeling | motion | engineering modeling | motion | modeling | modeling | design | design | manufacture | manufacture | design principles | design principles | fabrication process | fabrication process | functional requirements | functional requirements | precision instruments | precision instruments | nanomanipulators | fiber optics | micro- photonics | nano-photonics | nanorobotics | MEMS | nanomanipulators | fiber optics | micro- photonics | nano-photonics | nanorobotics | MEMS | piezoelectric | transducer | actuator | sensor | piezoelectric | transducer | actuator | sensor | constraint | rigid constraint | flexible constraint | ride-flexible constraint | constraint | rigid constraint | flexible constraint | ride-flexible constraint | constaint-based design | constaint-based design | carbon nanotube | carbon nanotube | nanowire | nanowire | scanning tunneling microscope | scanning tunneling microscope | flexure | flexure | protein structure | protein structure | polymer structure | polymer structure | nanopelleting | nanopipette | nanowire | nanopelleting | nanopipette | nanowire | TMA pixel array | TMA pixel array | error modeling | error modeling | repeatability | repeatability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.512 Synthetic Organic Chemistry II (MIT)

Description

This course focuses on general methods and strategies for the synthesis of complex organic molecules. Emphasis is on strategies for stereoselective synthesis, including stereocontrolled synthesis of complex acyclic compounds.

Subjects

synthetic organic chemistry | synthesis | complex organic molecules | stereoselective synthesis | acyclic compounds | stereocontrolled synthesis | stereocontrolled alkylation | stereocontrolled conjugate addition | carbonyls | aldol reactions | carbonyl reduction | alkene reduction | hydroboration | dihydroxylation | epoxidation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.081J Introduction to Sustainable Energy (MIT) 22.081J Introduction to Sustainable Energy (MIT)

Description

This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments. This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments.

Subjects

22.081 | 22.081 | 2.650 | 2.650 | 10.291 | 10.291 | 1.818 | 1.818 | 10.391 | 10.391 | 11.371 | 11.371 | 22.811 | 22.811 | ESD.166 | ESD.166 | energy transfer | energy transfer | clean technologies | clean technologies | energy resource assessment | energy resource assessment | energy conversion | energy conversion | wind power | wind power | nuclear proliferation | nuclear proliferation | nuclear waste disposal | nuclear waste disposal | carbon management options | carbon management options | geothermal energy | geothermal energy | solar photovoltaics | solar photovoltaics | solar thermal energy | solar thermal energy | biomass energy | biomass energy | biomass conversion | biomass conversion | eco-buildings | eco-buildings | hydropower | hydropower

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Aligned carbon nanotubes, coated with a conducting polymer

Description

Carbon nanotubes are a long, tubular form of carbon that has an extremely high surface area. Conducting polymers, as their name suggests, are a group of polymers that exhibit excellent electrical conductivity, in some cases reaching that of copper.

Subjects

alignment | carbon | carbon nanotube | coating | conducting polymer | nanotube | polymer | polypyrrole | DoITPoMS | University of Cambridge | micrograph | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_images.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata