Searching for combustion : 31 results found | RSS Feed for this search

1

2.61 Internal Combustion Engines (MIT) 2.61 Internal Combustion Engines (MIT)

Description

This course elaborates on the fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact, study of fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, relevant to engine power, efficiency, and emissions, examination of design features and operating characteristics of different types of internal combustion engines: spark-ignition, diesel, stratified-charge, and mixed-cycle engines. The project section details the Engine Laboratory project. We have aimed this course for graduate and senior undergraduate students. This course elaborates on the fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact, study of fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, relevant to engine power, efficiency, and emissions, examination of design features and operating characteristics of different types of internal combustion engines: spark-ignition, diesel, stratified-charge, and mixed-cycle engines. The project section details the Engine Laboratory project. We have aimed this course for graduate and senior undergraduate students.

Subjects

internal combustion engines | internal combustion engines | engine operation | engine operation | engine fuel requirements | engine fuel requirements | environmental impact | environmental impact | fluid flow | fluid flow | thermodynamics | thermodynamics | combustion | combustion | heat transfer and friction phenomena | heat transfer and friction phenomena | fuel properties | fuel properties | power | power | efficiency | efficiency | emissions | emissions | spark-ignition | spark-ignition | diesel | diesel | stratified-charge | stratified-charge | mixed-cycle engine. | mixed-cycle engine.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.61 Internal Combustion Engines (MIT) 2.61 Internal Combustion Engines (MIT)

Description

This course studies the fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Topics include fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, with reference to engine power, efficiency, and emissions. Students examine the design features and operating characteristics of different types of internal combustion engines: spark-ignition, diesel, stratified-charge, and mixed-cycle engines. Class includes lab project in the Engine Laboratory. This course studies the fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Topics include fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, with reference to engine power, efficiency, and emissions. Students examine the design features and operating characteristics of different types of internal combustion engines: spark-ignition, diesel, stratified-charge, and mixed-cycle engines. Class includes lab project in the Engine Laboratory.

Subjects

internal combustion engines | internal combustion engines | engine operation | engine operation | engine fuel requirements | engine fuel requirements | environmental impact | environmental impact | fluid flow | thermodynamics | combustion | heat transfer and friction phenomena | fluid flow | thermodynamics | combustion | heat transfer and friction phenomena | fuel properties | fuel properties | power | power | efficiency | efficiency | emissions | emissions | spark-ignition | spark-ignition | diesel | diesel | stratified-charge | stratified-charge | mixed-cycle engine | mixed-cycle engine | full lecture notes | full lecture notes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.61 Internal Combustion Engines (MIT)

Description

This course studies the fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Topics include fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, with reference to engine power, efficiency, and emissions. Students examine the design features and operating characteristics of different types of internal combustion engines: spark-ignition, diesel, stratified-charge, and mixed-cycle engines. Class includes lab project in the Engine Laboratory.

Subjects

internal combustion engines | engine operation | engine fuel requirements | environmental impact | fluid flow | thermodynamics | combustion | heat transfer and friction phenomena | fuel properties | power | efficiency | emissions | spark-ignition | diesel | stratified-charge | mixed-cycle engine | full lecture notes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.68J Kinetics of Chemical Reactions (MIT) 5.68J Kinetics of Chemical Reactions (MIT)

Description

This course deals with the experimental and theoretical aspects of chemical reaction kinetics, including transition-state theories, molecular beam scattering, classical techniques, quantum and statistical mechanical estimation of rate constants, pressure-dependence and chemical activation, modeling complex reacting mixtures, and uncertainty/sensitivity analyses. Reactions in the gas phase, liquid phase, and on surfaces are discussed with examples drawn from atmospheric, combustion, industrial, catalytic, and biological chemistry. This course deals with the experimental and theoretical aspects of chemical reaction kinetics, including transition-state theories, molecular beam scattering, classical techniques, quantum and statistical mechanical estimation of rate constants, pressure-dependence and chemical activation, modeling complex reacting mixtures, and uncertainty/sensitivity analyses. Reactions in the gas phase, liquid phase, and on surfaces are discussed with examples drawn from atmospheric, combustion, industrial, catalytic, and biological chemistry.

Subjects

quantum mechanics | quantum mechanics | statistical mechanics | statistical mechanics | chemical reaction kinetics | chemical reaction kinetics | transition-state theories | transition-state theories | molecular beam scattering | molecular beam scattering | classical techniques | classical techniques | rate constants | rate constants | pressure-dependence | pressure-dependence | chemical activation | chemical activation | atmosphere | atmosphere | combustion | combustion | catalytic | catalytic | biological chemistry | biological chemistry | elementary kinetics | elementary kinetics | experimental kinetics | experimental kinetics | reaction rate theory | reaction rate theory | thermodynamics | thermodynamics | practical prediction methods | practical prediction methods | handling large kinetic models | handling large kinetic models | reactions in solution | reactions in solution | catalysis | catalysis | 5.68 | 5.68 | 10.652 | 10.652

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.60 Fundamentals of Advanced Energy Conversion (MIT) 2.60 Fundamentals of Advanced Energy Conversion (MIT)

Description

This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization

Subjects

Thermodynamics | Thermodynamics | chemistry | chemistry | flow | flow | transport processes | transport processes | energy systems | energy systems | energy conversion in thermomechanical | thermochemical | electrochemical | energy conversion in thermomechanical | thermochemical | electrochemical | and photoelectric processes | and photoelectric processes | power and transportation systems | power and transportation systems | efficiency | efficiency | environmental impact | environmental impact | performance | performance | fossil fuels | fossil fuels | hydrogen resources | hydrogen resources | nuclear resources | nuclear resources | renewable resources | renewable resources | fuel reforming | fuel reforming | hydrogen and synthetic fuel production | hydrogen and synthetic fuel production | fuel cells and batteries | fuel cells and batteries | combustion | combustion | hybrids | hybrids | catalysis | catalysis | supercritical and combined cycles | supercritical and combined cycles | photovoltaics | photovoltaics | energy storage and transmission | energy storage and transmission | Optimal source utilization | Optimal source utilization | fuel-life cycle analysis. | fuel-life cycle analysis. | thermochemical | electrochemical | and photoelectric processes | thermochemical | electrochemical | and photoelectric processes | 2.62 | 2.62 | 10.392 | 10.392 | 22.40 | 22.40

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Energy resources: Coal Energy resources: Coal

Description

During the Industrial Revolution half of the world's coal came from Britain. We still rely heavily on it today to meet our energy needs, but now we import more than we produce. Burning it introduces large amounts of gases into the atmosphere that harm the environment in a variety of ways. In this free course, Energy resources: Coal, it will become apparent that the most appealing quality of coal is that there is plenty of it. First published on Tue, 22 Mar 2016 as Energy resources: Coal. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 During the Industrial Revolution half of the world's coal came from Britain. We still rely heavily on it today to meet our energy needs, but now we import more than we produce. Burning it introduces large amounts of gases into the atmosphere that harm the environment in a variety of ways. In this free course, Energy resources: Coal, it will become apparent that the most appealing quality of coal is that there is plenty of it. First published on Tue, 22 Mar 2016 as Energy resources: Coal. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 First published on Tue, 22 Mar 2016 as Energy resources: Coal. To find out more visit The Open University's Openlearn website. Creative-Commons 2016 First published on Tue, 22 Mar 2016 as Energy resources: Coal. To find out more visit The Open University's Openlearn website. Creative-Commons 2016

Subjects

Environmental Science | Environmental Science | industrial accidents | industrial accidents | road safety | road safety | workers | workers | private education | private education | ethics | ethics | detox | detox | neonatal | neonatal | L194 | L194 | food shopping | food shopping | ordering food | ordering food | internal combustion engines | internal combustion engines

License

Except for third party materials and otherwise stated (see http://www.open.ac.uk/conditions terms and conditions), this content is made available under a http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Licence Licensed under a Creative Commons Attribution - NonCommercial-ShareAlike 2.0 Licence - see http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ - Original copyright The Open University

Site sourced from

http://www.open.edu/openlearn/rss/try-content

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.61 Internal Combustion Engines (MIT)

Description

This course elaborates on the fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact, study of fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, relevant to engine power, efficiency, and emissions, examination of design features and operating characteristics of different types of internal combustion engines: spark-ignition, diesel, stratified-charge, and mixed-cycle engines. The project section details the Engine Laboratory project. We have aimed this course for graduate and senior undergraduate students.

Subjects

internal combustion engines | engine operation | engine fuel requirements | environmental impact | fluid flow | thermodynamics | combustion | heat transfer and friction phenomena | fuel properties | power | efficiency | emissions | spark-ignition | diesel | stratified-charge | mixed-cycle engine.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.611 Marine Power and Propulsion (MIT) 2.611 Marine Power and Propulsion (MIT)

Description

This course discusses the selection and evaluation of commercial and naval ship power and propulsion systems. It will cover the analysis of propulsors, prime mover thermodynamic cycles, propeller-engine matching, propeller selection, waterjet analysis, and reviews alternative propulsors. The course also investigates thermodynamic analyses of Rankine, Brayton, Diesel, and Combined cycles, reduction gears and integrated electric drive. Battery operated vehicles and fuel cells are also discussed. The term project requires analysis of alternatives in propulsion plant design for given physical, performance, and economic constraints. Graduate students complete different assignments and exams. This course discusses the selection and evaluation of commercial and naval ship power and propulsion systems. It will cover the analysis of propulsors, prime mover thermodynamic cycles, propeller-engine matching, propeller selection, waterjet analysis, and reviews alternative propulsors. The course also investigates thermodynamic analyses of Rankine, Brayton, Diesel, and Combined cycles, reduction gears and integrated electric drive. Battery operated vehicles and fuel cells are also discussed. The term project requires analysis of alternatives in propulsion plant design for given physical, performance, and economic constraints. Graduate students complete different assignments and exams.

Subjects

marine propulsion | marine propulsion | propellers | propellers | waterjets | waterjets | power plants | power plants | thermodynamics | thermodynamics | reversible cycles | reversible cycles | availability | availability | rankine cycle | rankine cycle | combustion | combustion | brayton cycle | brayton cycle | diesel cycle | diesel cycle | reduction gears | reduction gears | electric propulsors | electric propulsors | electric drive | electric drive | propulsion dynamics | propulsion dynamics | small underwater vehicles | small underwater vehicles

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.50 Introduction to Propulsion Systems (MIT) 16.50 Introduction to Propulsion Systems (MIT)

Description

This course presents aerospace propulsive devices as systems, with functional requirements and engineering and environmental limitations along with requirements and limitations that constrain design choices. Both air-breathing and rocket engines are covered, at a level which enables rational integration of the propulsive system into an overall vehicle design. Mission analysis, fundamental performance relations, and exemplary design solutions are presented. This course presents aerospace propulsive devices as systems, with functional requirements and engineering and environmental limitations along with requirements and limitations that constrain design choices. Both air-breathing and rocket engines are covered, at a level which enables rational integration of the propulsive system into an overall vehicle design. Mission analysis, fundamental performance relations, and exemplary design solutions are presented.

Subjects

gas turbines | gas turbines | propulsion | propulsion | rockets | rockets | rocket engines | rocket engines | air-breathing engines | air-breathing engines | turbomachines | turbomachines | aeroengines | aeroengines | turbines | turbines | aircraft engines | aircraft engines | turbofans | turbofans | thrusters | thrusters | combustion turbine | combustion turbine | turbojets | turbojets | turboprops | turboprops | chemical propulsion | chemical propulsion | electrical propulsion | electrical propulsion | rocket nozzles | rocket nozzles

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.682 Technology in Transportation (MIT) 16.682 Technology in Transportation (MIT)

Description

This course provides an introduction to the transportation industry's major technical challenges and considerations. For upper level undergraduates interested in learning about the transportation field in a broad but quantitative manner. Topics include road vehicle engineering, internal combustion engines, batteries and motors, electric and hybrid powertrains, urban and high speed rail transportation, water vessels, aircraft types and aerodynamics, radar, navigation, GPS, GIS. Students will complete a project on a subject of their choosing. This course provides an introduction to the transportation industry's major technical challenges and considerations. For upper level undergraduates interested in learning about the transportation field in a broad but quantitative manner. Topics include road vehicle engineering, internal combustion engines, batteries and motors, electric and hybrid powertrains, urban and high speed rail transportation, water vessels, aircraft types and aerodynamics, radar, navigation, GPS, GIS. Students will complete a project on a subject of their choosing.

Subjects

technology | technology | transportation | transportation | energy in transportation | energy in transportation | internal combustion engines | internal combustion engines | road vehicle engineering | road vehicle engineering | machine elements | machine elements | hybrids | hybrids | electricity and magnetism | electricity and magnetism | shipping | shipping | fluid dynamics | fluid dynamics | aircraft types and history | aircraft types and history | GPS | GPS | GIS | GIS | radar | radar

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.58J Radiative Transfer (MIT) 2.58J Radiative Transfer (MIT)

Description

This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing. This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing.

Subjects

thermal radiation | thermal radiation | heat transfer | heat transfer | photon transfer | photon transfer | quantum modeling | quantum modeling | materials | materials | electromagnetic | electromagnetic | absorption | absorption | emitting media | emitting media | scattering | scattering | laser | laser | imaging | imaging | infrared | infrared | global warming | global warming | semiconductor manufacturing | semiconductor manufacturing | combustion | combustion | furnace | furnace | high temperature processing | high temperature processing | Drude | Drude | Lorenz | Lorenz | gas | gas | dielectric | dielectric | Monte Carlo | Monte Carlo | simulation | simulation | solar energy | solar energy | solar power | solar power | solar cell | solar cell | 2.58 | 2.58 | 10.74 | 10.74

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.091 Nuclear Reactor Safety (MIT) 22.091 Nuclear Reactor Safety (MIT)

Description

Problems in nuclear engineering often involve applying knowledge from many disciplines simultaneously in achieving satisfactory solutions. The course will focus on understanding the complete nuclear reactor system including the balance of plant, support systems and resulting interdependencies affecting the overall safety of the plant and regulatory oversight. Both the Seabrook and Pilgrim nuclear plant simulators will be used as part of the educational experience to provide as realistic as possible understanding of nuclear power systems short of being at the reactor. Problems in nuclear engineering often involve applying knowledge from many disciplines simultaneously in achieving satisfactory solutions. The course will focus on understanding the complete nuclear reactor system including the balance of plant, support systems and resulting interdependencies affecting the overall safety of the plant and regulatory oversight. Both the Seabrook and Pilgrim nuclear plant simulators will be used as part of the educational experience to provide as realistic as possible understanding of nuclear power systems short of being at the reactor.

Subjects

nuclear | nuclear | reactor | reactor | safety | safety | dryout heat flux | dryout heat flux | preexisting hydrogen | preexisting hydrogen | blowdown gases | blowdown gases | downward propagation limit | downward propagation limit | debris dispersal | debris dispersal | direct containment heating | direct containment heating | gas blowthrough | gas blowthrough | seal table room | seal table room | subcompartment structures | subcompartment structures | compartmentalized geometries | compartmentalized geometries | overlying liquid layer | overlying liquid layer | preexisting atmosphere | preexisting atmosphere | blowdown time | blowdown time | melt generator | melt generator | detonation adiabatic | detonation adiabatic | thermohydraulic codes | thermohydraulic codes | hydrodynamic fragmentation | hydrodynamic fragmentation | vent clearing | vent clearing | combustion completeness | combustion completeness | containment pressurization | containment pressurization | melt retention | melt retention | containment loads | containment loads | melt ejection | melt ejection | containment geometry | containment geometry | hole ablation | hole ablation | Sandia National Laboratories | Sandia National Laboratories | Heat Transfer Conf | Heat Transfer Conf | Nuclear Regulatory Commission Report | Nuclear Regulatory Commission Report | Heat Mass Transfer | Heat Mass Transfer | The Combustion Institute | The Combustion Institute | Combustion Symposium International | Combustion Symposium International | New York | New York | Santa Barbara | Santa Barbara | Argonne National Laboratory | Argonne National Laboratory | Fluid Mech | Fluid Mech | Zion Probabilistic Safety Study | Zion Probabilistic Safety Study | Los Angeles | Los Angeles | Impact of Hydrogen | Impact of Hydrogen | Topical Meeting | Topical Meeting | Water Reactor Safety | Water Reactor Safety | Water Trans | Water Trans | Academic Press All | Academic Press All | American Society of Mechanical Engineers | American Society of Mechanical Engineers | Specialists Meeting | Specialists Meeting | University of California | University of California | Brookhaven National Laboratory | Brookhaven National Laboratory | Calvert Cliffs | Calvert Cliffs | Fourth Int | Fourth Int | International Conference | International Conference | New Trends. | New Trends.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.512 Rocket Propulsion (MIT) 16.512 Rocket Propulsion (MIT)

Description

This class focuses on chemical rocket propulsion systems for launch, orbital, and interplanetary flight. It studies the modeling of solid, liquid-bipropellant, and hybrid rocket engines. Thermochemistry, prediction of specific impulse, and nozzle flows including real gas and kinetic effects will also be covered. Other topics to be covered include structural constraints, propellant feed systems, turbopumps, and combustion processes in solid, liquid, and hybrid rockets. This class focuses on chemical rocket propulsion systems for launch, orbital, and interplanetary flight. It studies the modeling of solid, liquid-bipropellant, and hybrid rocket engines. Thermochemistry, prediction of specific impulse, and nozzle flows including real gas and kinetic effects will also be covered. Other topics to be covered include structural constraints, propellant feed systems, turbopumps, and combustion processes in solid, liquid, and hybrid rockets.

Subjects

chemical rocket propulsion systems for launch | chemical rocket propulsion systems for launch | orbital | orbital | and interplanetary flight | and interplanetary flight | Modeling of solid propellant | Modeling of solid propellant | liquid-bipropellant | liquid-bipropellant | hybrid rocket engines | hybrid rocket engines | thermochemistry | thermochemistry | prediction of specific impulse | prediction of specific impulse | nozzle flows including real gas and kinetic effects | nozzle flows including real gas and kinetic effects | structural constraints | structural constraints | propellant feed systems | propellant feed systems | turbopumps | turbopumps | combustion processes in solid | combustion processes in solid | liquid | liquid | and hybrid rockets | and hybrid rockets | cooling | cooling | heat sink | heat sink | ablative | ablative

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Energy resources: Coal

Description

During the Industrial Revolution half of the world's coal came from Britain. We still rely heavily on it today to meet our energy needs but now we import more than we produce. Burning it introduces large amounts of gases into the atmosphere that harm the environment in a variety of ways. In this free course

Subjects

Environmental Science | industrial accidents | road safety | workers | private education | ethics | detox | neonatal | L194 | food shopping | ordering food | internal combustion engines

License

Except for third party materials and otherwise stated in the acknowledgement section (see our terms and conditions http://www.open.ac.uk/conditions) this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence. - http://creativecommons.org/licenses/by-nc-sa/4.0 Except for third party materials and otherwise stated in the acknowledgement section (see our terms and conditions http://www.open.ac.uk/conditions) this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence. - http://creativecommons.org/licenses/by-nc-sa/4.0

Site sourced from

http://www.open.edu/openlearn/feeds/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.611 Marine Power and Propulsion (MIT)

Description

This course discusses the selection and evaluation of commercial and naval ship power and propulsion systems. It will cover the analysis of propulsors, prime mover thermodynamic cycles, propeller-engine matching, propeller selection, waterjet analysis, and reviews alternative propulsors. The course also investigates thermodynamic analyses of Rankine, Brayton, Diesel, and Combined cycles, reduction gears and integrated electric drive. Battery operated vehicles and fuel cells are also discussed. The term project requires analysis of alternatives in propulsion plant design for given physical, performance, and economic constraints. Graduate students complete different assignments and exams.

Subjects

marine propulsion | propellers | waterjets | power plants | thermodynamics | reversible cycles | availability | rankine cycle | combustion | brayton cycle | diesel cycle | reduction gears | electric propulsors | electric drive | propulsion dynamics | small underwater vehicles

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Transport and sustainability

Description

This free course

Subjects

Environmental Studies | Technology | transport | emissions | sustainability | internal combustion engines | passenger cars | CO2 | carbon dioxide (CO2)

License

Except for third party materials and otherwise stated in the acknowledgement section (see our terms and conditions http://www.open.ac.uk/conditions) this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence. - http://creativecommons.org/licenses/by-nc-sa/4.0 Except for third party materials and otherwise stated in the acknowledgement section (see our terms and conditions http://www.open.ac.uk/conditions) this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence. - http://creativecommons.org/licenses/by-nc-sa/4.0

Site sourced from

http://www.open.edu/openlearn/feeds/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.58J Radiative Transfer (MIT)

Description

This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing.

Subjects

thermal radiation | heat transfer | photon transfer | quantum modeling | materials | electromagnetic | absorption | emitting media | scattering | laser | imaging | infrared | global warming | semiconductor manufacturing | combustion | furnace | high temperature processing | Drude | Lorenz | gas | dielectric | Monte Carlo | simulation | solar energy | solar power | solar cell | 2.58 | 10.74

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.60 Fundamentals of Advanced Energy Conversion (MIT)

Description

This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization

Subjects

Thermodynamics | chemistry | flow | transport processes | energy systems | energy conversion in thermomechanical | thermochemical | electrochemical | and photoelectric processes | power and transportation systems | efficiency | environmental impact | performance | fossil fuels | hydrogen resources | nuclear resources | renewable resources | fuel reforming | hydrogen and synthetic fuel production | fuel cells and batteries | combustion | hybrids | catalysis | supercritical and combined cycles | photovoltaics | energy storage and transmission | Optimal source utilization | fuel-life cycle analysis. | thermochemical | electrochemical | and photoelectric processes | 2.62 | 10.392 | 22.40

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.68J Kinetics of Chemical Reactions (MIT)

Description

This course deals with the experimental and theoretical aspects of chemical reaction kinetics, including transition-state theories, molecular beam scattering, classical techniques, quantum and statistical mechanical estimation of rate constants, pressure-dependence and chemical activation, modeling complex reacting mixtures, and uncertainty/sensitivity analyses. Reactions in the gas phase, liquid phase, and on surfaces are discussed with examples drawn from atmospheric, combustion, industrial, catalytic, and biological chemistry.

Subjects

quantum mechanics | statistical mechanics | chemical reaction kinetics | transition-state theories | molecular beam scattering | classical techniques | rate constants | pressure-dependence | chemical activation | atmosphere | combustion | catalytic | biological chemistry | elementary kinetics | experimental kinetics | reaction rate theory | thermodynamics | practical prediction methods | handling large kinetic models | reactions in solution | catalysis | 5.68 | 10.652

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.68J Kinetics of Chemical Reactions (MIT)

Description

This course deals with the experimental and theoretical aspects of chemical reaction kinetics, including transition-state theories, molecular beam scattering, classical techniques, quantum and statistical mechanical estimation of rate constants, pressure-dependence and chemical activation, modeling complex reacting mixtures, and uncertainty/sensitivity analyses. Reactions in the gas phase, liquid phase, and on surfaces are discussed with examples drawn from atmospheric, combustion, industrial, catalytic, and biological chemistry.

Subjects

quantum mechanics | statistical mechanics | chemical reaction kinetics | transition-state theories | molecular beam scattering | classical techniques | rate constants | pressure-dependence | chemical activation | atmosphere | combustion | catalytic | biological chemistry | elementary kinetics | experimental kinetics | reaction rate theory | thermodynamics | practical prediction methods | handling large kinetic models | reactions in solution | catalysis | 5.68 | 10.652

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.60 Fundamentals of Advanced Energy Conversion (MIT)

Description

This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization

Subjects

Thermodynamics | chemistry | flow | transport processes | energy systems | energy conversion in thermomechanical | thermochemical | electrochemical | and photoelectric processes | power and transportation systems | efficiency | environmental impact | performance | fossil fuels | hydrogen resources | nuclear resources | renewable resources | fuel reforming | hydrogen and synthetic fuel production | fuel cells and batteries | combustion | hybrids | catalysis | supercritical and combined cycles | photovoltaics | energy storage and transmission | Optimal source utilization | fuel-life cycle analysis. | thermochemical | electrochemical | and photoelectric processes | 2.62 | 10.392 | 22.40

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

The three-way catalytic converter

Description

This extract is concerned primarily with the chemistry that underpins the operation of the three-way catalytic converter that is placed in the exhaust systems of motor vehicles in order to reduce the emissions of primary pollutants: carbon monoxide, oxides of nitrogen and volatile organic compounds, including hydrocarbons. Discussion of the various effects of these pollutants and the consequent introduction and refinement of ‘automotive emission regulations’ has not been included, nor is there a look forward to future research trends. These topics are covered in the original Case Study.

Subjects

science and nature | catalyst | catalytic | ceria | chemistry | co | combustion | converter | emissions | exhaust | hydrocarbons | no | palladium | platinum | pollutants | rhodium | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Delovanje 4-taktnega motorja Animation of four-stroke engine

Description

Animacija je izdelana v Flashu. Predhodno je potrebno naložiti Flash-player (macromedia.com) Detailed animation of four-stroke engine in Adobe Flash (.swf) - Flash player required.

Subjects

transverzalna vzgoja | cross-curricular education | tehnološko izobraževanje | technological education | tehnologija | technology | motor z notranjim izgorevanjem | internal combustion engine | štiritaktni motor | four stroke engine | animacija | animation

License

http://creativecommons.org/licenses/by-nc-sa/2.5/si/ http://creativecommons.org/licenses/by-nc-sa/2.5/si/

Site sourced from

http://atlas.fri.uni-lj.si/oai/index.php?verb=ListRecords&metadataPrefix=oai_dc&set=uciteljska

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Transport and sustainability

Description

This free course

Subjects

Technology | Environmental Science | transport | emissions | sustainability | internal combustion engines | passenger cars | CO2 | carbon dioxide (CO2)

License

Except for third party materials and otherwise stated in the acknowledgement section (see our terms and conditions http://www.open.ac.uk/conditions) this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence. - http://creativecommons.org/licenses/by-nc-sa/4.0 Except for third party materials and otherwise stated in the acknowledgement section (see our terms and conditions http://www.open.ac.uk/conditions) this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence. - http://creativecommons.org/licenses/by-nc-sa/4.0

Site sourced from

http://www.open.edu/openlearn/feeds/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Energy resources: Coal

Description

During the Industrial Revolution half of the world's coal came from Britain. We still rely heavily on it today to meet our energy needs but now we import more than we produce. Burning it introduces large amounts of gases into the atmosphere that harm the environment in a variety of ways. In this free course

Subjects

Environmental Studies | industrial accidents | road safety | workers | private education | ethics | detox | neonatal | L194 | food shopping | ordering food | internal combustion engines

License

Except for third party materials and otherwise stated in the acknowledgement section (see our terms and conditions http://www.open.ac.uk/conditions) this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence. - http://creativecommons.org/licenses/by-nc-sa/4.0 Except for third party materials and otherwise stated in the acknowledgement section (see our terms and conditions http://www.open.ac.uk/conditions) this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence. - http://creativecommons.org/licenses/by-nc-sa/4.0

Site sourced from

http://www.open.edu/openlearn/feeds/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata