Searching for composition : 195 results found | RSS Feed for this search

1 2 3 4 5 6 7 8

21M.380 Music and Technology: Algorithmic and Generative Music (MIT) 21M.380 Music and Technology: Algorithmic and Generative Music (MIT)

Description

Includes audio/video content: AV special element audio. This course examines the history, techniques, and aesthetics of mechanical and computer-aided approaches to algorithmic music composition and generative music systems. Through creative hands-on projects, readings, listening assignments, and lectures, students will explore a variety of historical and contemporary approaches. Diverse tools and systems will be employed, including applications in Python, MIDI, Csound, SuperCollider, and Pure Data. Includes audio/video content: AV special element audio. This course examines the history, techniques, and aesthetics of mechanical and computer-aided approaches to algorithmic music composition and generative music systems. Through creative hands-on projects, readings, listening assignments, and lectures, students will explore a variety of historical and contemporary approaches. Diverse tools and systems will be employed, including applications in Python, MIDI, Csound, SuperCollider, and Pure Data.

Subjects

Music composition | Music composition | music history | music history | music aesthetics | music aesthetics | algorithmic composition | algorithmic composition | generative music | generative music | computer music | computer music | electronic music | electronic music | contemporary music | contemporary music | music synthesis | music synthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Mathematical Methods II Mathematical Methods II

Description

This course consists of a introduction to linear algebra. This course consists of a introduction to linear algebra.

Subjects

Bachelor in Statistics and Business | Bachelor in Statistics and Business | Algebra | Algebra | Prerequisites | Prerequisites | Systems of linear equations | Systems of linear equations | Eigenvalues and eigenvectors | Eigenvalues and eigenvectors | General information | General information | Orthogonality and least-square problems | Orthogonality and least-square problems | Singular value decomposition | Singular value decomposition | ística y Empresa | ística y Empresa | Real vector spaces | Real vector spaces | Matrices and determinants | Matrices and determinants | Diagonalization | Diagonalization | 2012 | 2012

License

Copyright 2015, UC3M http://creativecommons.org/licenses/by-nc-sa/4.0/

Site sourced from

http://ocw.uc3m.es/ocwuniversia/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.335J Introduction to Numerical Methods (MIT) 18.335J Introduction to Numerical Methods (MIT)

Description

This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matrices, preconditioning, linear algebra software. Problem sets require some knowledge of MATLAB®. This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matrices, preconditioning, linear algebra software. Problem sets require some knowledge of MATLAB®.

Subjects

numerical linear algebra | numerical linear algebra | linear systems | linear systems | eigenvalue decomposition | eigenvalue decomposition | QR/SVD factorization | QR/SVD factorization | numerical algorithms | numerical algorithms | IEEE floating point standard | IEEE floating point standard | sparse matrices | sparse matrices | structured matrices | structured matrices | preconditioning | preconditioning | linear algebra software | linear algebra software | Matlab | Matlab

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21W.780 Communicating in Technical Organizations (MIT) 21W.780 Communicating in Technical Organizations (MIT)

Description

This class offers students an opportunity to experiment with various forms and practices of cellphone communication and, most importantly, to propose and develop a semester-long project using advanced A780 cellphones donated by Motorola along with access to J2ME™ source code for programming cellphone applications. Class size is limited. Students in small collaborative groups will propose, implement and report on a semester-long project. This class offers students an opportunity to experiment with various forms and practices of cellphone communication and, most importantly, to propose and develop a semester-long project using advanced A780 cellphones donated by Motorola along with access to J2ME™ source code for programming cellphone applications. Class size is limited. Students in small collaborative groups will propose, implement and report on a semester-long project.

Subjects

communication | communication | contemporary engineering and science professional | contemporary engineering and science professional | analyzing how composition and publication contribute to work management and knowledge production | analyzing how composition and publication contribute to work management and knowledge production | writing specific kinds of documents in a clear style | writing specific kinds of documents in a clear style | communication as organizational process | communication as organizational process | electronic modes such as e-mail and the Internet | electronic modes such as e-mail and the Internet | the informational and social roles of specific document forms | the informational and social roles of specific document forms | writing as collaboration | writing as collaboration | the writing process | the writing process | the elements of style | the elements of style | methods of oral presentation | and communication ethics | methods of oral presentation | and communication ethics | case studies | case studies | writing assignments | writing assignments | oral presentation | oral presentation | methods of oral presentation | and communication ethics | methods of oral presentation | and communication ethics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.40J Physical Metallurgy (MIT) 3.40J Physical Metallurgy (MIT)

Description

This course examines how the presence of 1-, 2- and 3D defects and second phases control the mechanical, electromagnetic and chemical behavior of metals and alloys. It considers point, line and interfacial defects in the context of structural transformations including annealing, spinodal decomposition, nucleation, growth, and particle coarsening. In addition, it concentrates on structure-function relationships, and in particular how grain size, interstitial and substitutional solid solutions, and second-phase particles impact mechanical and other properties. Examples include microelectronic circuitry, magnetic memory and drug delivery applications. This course examines how the presence of 1-, 2- and 3D defects and second phases control the mechanical, electromagnetic and chemical behavior of metals and alloys. It considers point, line and interfacial defects in the context of structural transformations including annealing, spinodal decomposition, nucleation, growth, and particle coarsening. In addition, it concentrates on structure-function relationships, and in particular how grain size, interstitial and substitutional solid solutions, and second-phase particles impact mechanical and other properties. Examples include microelectronic circuitry, magnetic memory and drug delivery applications.

Subjects

1- | 2- and 3D defects | 1- | 2- and 3D defects | second phases | second phases | mechanical | electromagnetic and chemical behavior of metals and alloys | mechanical | electromagnetic and chemical behavior of metals and alloys | point | line and interfacial defects | point | line and interfacial defects | structural transformations | structural transformations | annealing | annealing | spinodal decomposition | spinodal decomposition | nucleation | nucleation | growth | growth | particle coarsening | particle coarsening | structure-function relationships | structure-function relationships | grain size | grain size | interstitial and substitutional solid solutions | interstitial and substitutional solid solutions | second-phase particles | second-phase particles | microelectronic circuitry | microelectronic circuitry | magnetic memory | magnetic memory | drug delivery applications | drug delivery applications | 3.40 | 3.40 | 22.71 | 22.71

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.40J Physical Metallurgy (MIT) 3.40J Physical Metallurgy (MIT)

Description

Discusses structure-property relationships in metallic alloys selected to illustrate some basic concepts of physical metallurgy and alloy design. Fundamentals of annealing, spinodal decomposition, nucleation, growth, and particle coarsening. Concentrates on structure, structure formation, and structure-properties relationships. Also considers structural features: grain size, interstitial and substitutional solutes, precipitates, second-phase particles, and eutectoids. Examples from advanced structural alloys and low-dimensional alloys for magnetic recording media and integrated circuits. Discusses structure-property relationships in metallic alloys selected to illustrate some basic concepts of physical metallurgy and alloy design. Fundamentals of annealing, spinodal decomposition, nucleation, growth, and particle coarsening. Concentrates on structure, structure formation, and structure-properties relationships. Also considers structural features: grain size, interstitial and substitutional solutes, precipitates, second-phase particles, and eutectoids. Examples from advanced structural alloys and low-dimensional alloys for magnetic recording media and integrated circuits.

Subjects

metallic alloys | metallic alloys | physical metallurgy | physical metallurgy | alloy design | alloy design | annealing | annealing | spinodal decomposition | spinodal decomposition | nucleation | nucleation | particle coarsening | particle coarsening | structure | structure | structure formation | structure formation | structure-properties relationships | structure-properties relationships | structural features | structural features | 3.40 | 3.40 | 22.71 | 22.71

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT) 12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology). This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | history of the earth-surface environment | deep-sea sediments | deep-sea sediments | ice cores | ice cores | corals | corals | Micropaleontological | Micropaleontological | isotopic | isotopic | geochemical | and mineralogical changes | geochemical | and mineralogical changes | seawater composition | seawater composition | atmospheric chemistry | atmospheric chemistry | climate | climate | ocean temperature | ocean temperature | circulation | circulation | chemistry | chemistry | glacial/interglacial cycles | glacial/interglacial cycles | orbital forcing | orbital forcing | climate change | climate change | marine records | marine records | ice core records | ice core records | continental records | continental records | paleoceanographic data | paleoceanographic data | statistics | statistics | factor analysis | factor analysis | time series analysis | time series analysis | simple climatology | simple climatology | geochemical changes | geochemical changes | mineralogical changes | mineralogical changes | glacial cycles | glacial cycles | intergalacial cycles | intergalacial cycles | earth-surface environment | earth-surface environment | environmental history | environmental history | Oxygen Isotope | Oxygen Isotope | Coral Reefs | Coral Reefs | Paleoceanography | Paleoceanography | Paleoclimatology | Paleoclimatology | Paleothermometry | Paleothermometry | Atmospheric Carbon Dioxide | Atmospheric Carbon Dioxide | Ocean Chemistry | Ocean Chemistry | Salinity | Salinity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.22 Mechanical Properties of Materials (MIT) 3.22 Mechanical Properties of Materials (MIT)

Description

This course explores the phenomenology of mechanical behavior of materials at the macroscopic level and the relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics covered include elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Case studies and examples are drawn from structural and functional applications that include a variety of material classes: metals, ceramics, polymers, thin films, composites, and cellular materials. This course explores the phenomenology of mechanical behavior of materials at the macroscopic level and the relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics covered include elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Case studies and examples are drawn from structural and functional applications that include a variety of material classes: metals, ceramics, polymers, thin films, composites, and cellular materials.

Subjects

metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | bonding | bonding | structure | structure | energy band | energy band | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | optical detectors | optical detectors | sensors | sensors | thin films | thin films | biomaterials | biomaterials | cellular materials | cellular materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.225 Electronic and Mechanical Properties of Materials (MIT) 3.225 Electronic and Mechanical Properties of Materials (MIT)

Description

Electrical, optical, magnetic, and mechanical properties of metals, semiconductors, ceramics, and polymers. Discussion of roles of bonding, structure (crystalline, defect, energy band, and microstructure), and composition in influencing and controlling physical properties. Case studies drawn from a variety of applications including semiconductor diodes, optical detectors, sensors, thin films, biomaterials, composites, and cellular materials. Electrical, optical, magnetic, and mechanical properties of metals, semiconductors, ceramics, and polymers. Discussion of roles of bonding, structure (crystalline, defect, energy band, and microstructure), and composition in influencing and controlling physical properties. Case studies drawn from a variety of applications including semiconductor diodes, optical detectors, sensors, thin films, biomaterials, composites, and cellular materials.

Subjects

metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | bonding | bonding | energy band | energy band | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | optical detectors | optical detectors | sensors | sensors | thin films | thin films | biomaterials | biomaterials | cellular materials | cellular materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.335J Numerical Methods of Applied Mathematics I (MIT) 18.335J Numerical Methods of Applied Mathematics I (MIT)

Description

IEEE-standard, iterative and direct linear system solution methods, eigendecomposition and model-order reduction, fast Fourier transforms, multigrid, wavelets and other multiresolution methods, matrix sparsification. Nonlinear root finding (Newton's method). Numerical interpolation and extrapolation. Quadrature.Technical RequirementsFile decompression software, such as Winzip or StuffIt, is required to open the .tar files found on this course site. The .tar files contain additional files which require software as well. MATLAB® software is required to run the .m files.Postscript viewer software, such as Ghostscript/Ghostview, can be used to view the .ps files.Ghostscript/Ghostview, Adobe Photoshop, and Adobe Illustrator are among the software tools that can be used to view the .ep IEEE-standard, iterative and direct linear system solution methods, eigendecomposition and model-order reduction, fast Fourier transforms, multigrid, wavelets and other multiresolution methods, matrix sparsification. Nonlinear root finding (Newton's method). Numerical interpolation and extrapolation. Quadrature.Technical RequirementsFile decompression software, such as Winzip or StuffIt, is required to open the .tar files found on this course site. The .tar files contain additional files which require software as well. MATLAB® software is required to run the .m files.Postscript viewer software, such as Ghostscript/Ghostview, can be used to view the .ps files.Ghostscript/Ghostview, Adobe Photoshop, and Adobe Illustrator are among the software tools that can be used to view the .ep

Subjects

IEEE-standard | IEEE-standard | iterative and direct linear system solution methods | iterative and direct linear system solution methods | eigendecomposition and model-order reduction | eigendecomposition and model-order reduction | fast Fourier transforms | fast Fourier transforms | multigrid | multigrid | wavelets | wavelets | other multiresolution methods | other multiresolution methods | matrix sparsification | matrix sparsification | Nonlinear root finding (Newton's method) | Nonlinear root finding (Newton's method) | Numerical interpolation | Numerical interpolation | Numerical extrapolation | Numerical extrapolation | Quadrature | Quadrature | 18.335 | 18.335 | 6.337 | 6.337

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.815 Atmospheric Radiation (MIT) 12.815 Atmospheric Radiation (MIT)

Description

This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition. This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition.

Subjects

atmospheric radiation | atmospheric radiation | remote sensing | remote sensing | atmospheric physics | atmospheric physics | computer codes | computer codes | Radiative transfer equation | Radiative transfer equation | emission and scattering | emission and scattering | spectroscopy | spectroscopy | Mie theory | Mie theory | numerical solutions | numerical solutions | inverse problems | inverse problems | atmospheric temperature | atmospheric temperature | atmospheric composition | atmospheric composition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21G.101 Chinese I (Regular) (MIT) 21G.101 Chinese I (Regular) (MIT)

Description

This subject is the first semester of two that form an introduction to modern standard Chinese, commonly called Mandarin. Though not everyone taking this course will be an absolute beginner, the course presupposes no prior background in the language. The purpose of this course is to develop: (a) basic conversational abilities (pronunciation, fundamental grammatical patterns, common vocabulary, and standard usage); (b) basic reading skills (in both the traditional character set and the simplified); (c) an understanding of the way the Chinese writing system is structured, and the ability to copy and write characters; and (d) a sense of what learning a language like Chinese entails, and the sort of learning processes that it involves, so students are able to continue studying effectively on t This subject is the first semester of two that form an introduction to modern standard Chinese, commonly called Mandarin. Though not everyone taking this course will be an absolute beginner, the course presupposes no prior background in the language. The purpose of this course is to develop: (a) basic conversational abilities (pronunciation, fundamental grammatical patterns, common vocabulary, and standard usage); (b) basic reading skills (in both the traditional character set and the simplified); (c) an understanding of the way the Chinese writing system is structured, and the ability to copy and write characters; and (d) a sense of what learning a language like Chinese entails, and the sort of learning processes that it involves, so students are able to continue studying effectively on t

Subjects

Chinese | Chinese | Language | Language | Writing | Writing | Speaking | Speaking | Culture | Culture | China | China | Asia | Asia | Mandarin | Mandarin | aural comprehension | aural comprehension | chinese | chinese | conversational fluency | conversational fluency | pronunciation | pronunciation | grammar | grammar | vocabulary | vocabulary | reading competence | reading competence | traditional characters | traditional characters | composition | composition | romanization | romanization | simplified characters | simplified characters | 21F.101 | 21F.101 | 21F.151 | 21F.151

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21G.101 Chinese I (Regular) (MIT) 21G.101 Chinese I (Regular) (MIT)

Description

This subject is the first semester of two that form an introduction to modern standard Chinese, commonly called Mandarin. Though not everyone taking this course will be an absolute beginner, the course presupposes no prior background in the language. The emphasis is on developing (a) basic conversational abilities (pronunciation, fundamental grammatical patterns, common vocabulary, and standard usage), (b) basic reading and writing skills, and (c) an understanding of the language learning process so that students are able to continue studying effectively on their own.The main text is J. K. Wheatley’s Learning Chinese: A Foundation Course in Mandarin, part I (unpublished, but available online), which consists of several introductory chapters, seven core lessons (labeled 1, 2, 3&am This subject is the first semester of two that form an introduction to modern standard Chinese, commonly called Mandarin. Though not everyone taking this course will be an absolute beginner, the course presupposes no prior background in the language. The emphasis is on developing (a) basic conversational abilities (pronunciation, fundamental grammatical patterns, common vocabulary, and standard usage), (b) basic reading and writing skills, and (c) an understanding of the language learning process so that students are able to continue studying effectively on their own.The main text is J. K. Wheatley’s Learning Chinese: A Foundation Course in Mandarin, part I (unpublished, but available online), which consists of several introductory chapters, seven core lessons (labeled 1, 2, 3&am

Subjects

Asia | Asia | China | China | Culture | Culture | Language | Language | Mandarin | Mandarin | Speaking | Speaking | Writing | Writing | aural comprehension | aural comprehension | chinese | chinese | composition | composition | conversational fluency | conversational fluency | grammar | grammar | pronunciation | pronunciation | reading competence | reading competence | romanization | romanization | simplified characters | simplified characters | traditional characters | traditional characters | vocabulary | vocabulary

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.864 Inference from Data and Models (MIT) 12.864 Inference from Data and Models (MIT)

Description

The course is directed at making scientifically sensible deductions from the combination of observations with dynamics and kinematics represented, generically, as "models". There are two overlapping central themesLinear "inverse" methods and data "assimilation" including regression, singular value decomposition, objective mapping, non-stationary models and data, Kalman filters, adjoint methods ("assimilation") etc.Standard time series analysis, including basic statistics, Fourier methods, spectra, coherence, filtering, etc. The course is directed at making scientifically sensible deductions from the combination of observations with dynamics and kinematics represented, generically, as "models". There are two overlapping central themesLinear "inverse" methods and data "assimilation" including regression, singular value decomposition, objective mapping, non-stationary models and data, Kalman filters, adjoint methods ("assimilation") etc.Standard time series analysis, including basic statistics, Fourier methods, spectra, coherence, filtering, etc.

Subjects

kinematical and dynamical models | kinematical and dynamical models | Basic statistics | Basic statistics | linear algebra | linear algebra | inverse methods | inverse methods | singular value decompositions | singular value decompositions | control theory | control theory | sequential estimation | sequential estimation | Kalman filters | Kalman filters | smoothing algorithms | smoothing algorithms | adjoint/Pontryagin principle methods | adjoint/Pontryagin principle methods | model testing | model testing | stationary processes | stationary processes | Fourier methods | Fourier methods | z-transforms | z-transforms | sampling theorems | sampling theorems | spectra | spectra | multi-taper methods | multi-taper methods | coherences | coherences | filtering | filtering | quantitative combinations of models | quantitative combinations of models

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT) 12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files. This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files found on this course site. Free Microsoft® Excel viewer software can also be used to view the .xls files.

Subjects

history of the earth-surface environment | history of the earth-surface environment | deep-sea sediments | deep-sea sediments | ice cores | ice cores | corals | corals | Micropaleontological | Micropaleontological | isotopic | isotopic | geochemical | geochemical | and mineralogical changes | and mineralogical changes | seawater composition | seawater composition | atmospheric chemistry | atmospheric chemistry | climate | climate | ocean temperature | ocean temperature | circulation | circulation | chemistry | chemistry | glacial/interglacial cycles | glacial/interglacial cycles | orbital forcing | orbital forcing | geochemical | and mineralogical changes | geochemical | and mineralogical changes | 5. Micropaleontological | isotopic | geochemical | and mineralogical changes | 5. Micropaleontological | isotopic | geochemical | and mineralogical changes | Micropaleontological | isotopic | geochemical | and mineralogical changes | Micropaleontological | isotopic | geochemical | and mineralogical changes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21G.104 Chinese IV (Regular) (MIT) 21G.104 Chinese IV (Regular) (MIT)

Description

This is the continuing instruction in spoken and written Chinese, with particular emphasis on consolidating basic conversational skills and improving reading confidence and depth.Upon completion of the course, students should be able to speak Chinese with some fluency on basic conversational topics, achieve a basic level of reading competence within simplified and traditional characters learned plus common compounds, and be able to write short compositions.Technical RequirementsMicrosoft Internet Explorer (version 5.0+) on Microsoft Windows:From VIEW menu select Encoding... Auto Select... orChinese AutoSelect.Netscape (version 7.0+) on Microsoft Windows:From VIEW menu, select Character Coding...AutoDetect… Chinese.Microsoft Internet Explorer (version 5.0+) on Macintosh OS 9 or X: This is the continuing instruction in spoken and written Chinese, with particular emphasis on consolidating basic conversational skills and improving reading confidence and depth.Upon completion of the course, students should be able to speak Chinese with some fluency on basic conversational topics, achieve a basic level of reading competence within simplified and traditional characters learned plus common compounds, and be able to write short compositions.Technical RequirementsMicrosoft Internet Explorer (version 5.0+) on Microsoft Windows:From VIEW menu select Encoding... Auto Select... orChinese AutoSelect.Netscape (version 7.0+) on Microsoft Windows:From VIEW menu, select Character Coding...AutoDetect… Chinese.Microsoft Internet Explorer (version 5.0+) on Macintosh OS 9 or X:

Subjects

chinese; languge; mandarin; reading; conversation; writing; culture; china; society; custom | chinese; languge; mandarin; reading; conversation; writing; culture; china; society; custom | language | language | chinese | chinese | mandarin | mandarin | reading | reading | conversation | conversation | culture | culture | writing | writing | china | china | custom | custom | society | society | aural comprehension | aural comprehension | common compounds | common compounds | composition | composition | conversational fluency | conversational fluency | grammar | grammar | language laboratory | language laboratory | reading competence | reading competence | simplified characters | simplified characters | oral exercises | oral exercises | vocabulary | vocabulary | writing exercises | writing exercises | traditional characters | traditional characters | Chinese culture | Chinese culture | Chinese customs | Chinese customs | Chinese society | Chinese society

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.740 Paleoceanography (MIT) 12.740 Paleoceanography (MIT)

Description

This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology). This class examines tools, data, and ideas related to past climate changes as seen in marine, ice core, and continental records. The most recent climate changes (mainly the past 500,000 years, ranging up to about 2 million years ago) will be emphasized. Quantitative tools for the examination of paleoceanographic data will be introduced (statistics, factor analysis, time series analysis, simple climatology).

Subjects

history of the earth-surface environment | history of the earth-surface environment | deep-sea sediments | deep-sea sediments | ice cores | ice cores | corals | corals | Micropaleontological | Micropaleontological | isotopic | isotopic | geochemical | and mineralogical changes | geochemical | and mineralogical changes | seawater composition | seawater composition | atmospheric chemistry | atmospheric chemistry | climate | climate | ocean temperature | ocean temperature | circulation | circulation | chemistry | chemistry | glacial/interglacial cycles | glacial/interglacial cycles | orbital forcing | orbital forcing | climate change | climate change | marine records | marine records | ice core records | ice core records | continental records | continental records | paleoceanographic data | paleoceanographic data | statistics | statistics | factor analysis | factor analysis | time series analysis | time series analysis | simple climatology | simple climatology | geochemical changes | geochemical changes | mineralogical changes | mineralogical changes | glacial cycles | glacial cycles | intergalacial cycles | intergalacial cycles | earth-surface environment | earth-surface environment | environmental history | environmental history

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.864 Inference from Data and Models (MIT) 12.864 Inference from Data and Models (MIT)

Description

The course is directed at making scientifically sensible deductions from the combination of observations with dynamics and kinematics represented, generically, as "models". There are two overlapping central themeslinear "inverse" methods and data "assimilation" including regression, singular value decomposition, objective mapping, non-stationary models and data, Kalman filters, adjoint methods ("assimilation") etc.standard time series analysis, including basic statistics, Fourier methods, spectra, coherence, filtering, etc. The course is directed at making scientifically sensible deductions from the combination of observations with dynamics and kinematics represented, generically, as "models". There are two overlapping central themeslinear "inverse" methods and data "assimilation" including regression, singular value decomposition, objective mapping, non-stationary models and data, Kalman filters, adjoint methods ("assimilation") etc.standard time series analysis, including basic statistics, Fourier methods, spectra, coherence, filtering, etc.

Subjects

observation | observation | kinematical models | kinematical models | dynamical models | dynamical models | basic statistics | basic statistics | linear algebra | linear algebra | inverse methods | inverse methods | singular value decompositions | singular value decompositions | control theory | control theory | sequential estimation | sequential estimation | Kalman filters | Kalman filters | smoothing algorithms | smoothing algorithms | adjoint/Pontryagin principle methods | adjoint/Pontryagin principle methods | model testing | model testing | stationary processes | stationary processes | Fourier methods | Fourier methods | z-transforms | z-transforms | sampling theorems | sampling theorems | spectra | spectra | multi-taper methods | multi-taper methods | coherences | coherences | filtering | filtering | quantitative combinations | quantitative combinations | realistic observations | realistic observations | data assimilations | data assimilations | deduction | deduction | regression | regression | objective mapping | objective mapping | time series analysis | time series analysis | inference | inference

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21L.010 Writing About Literature (MIT) 21L.010 Writing About Literature (MIT)

Description

This is a HASS -CI course.  Like other communications-intensive courses in the humanities, arts, and social sciences, it allows students to produce 20 pages of polished writing with careful attention to revision.  It also offers substantial opportunities for oral expression, through presentations of written work, student-led discussion, and class participation.  The class has a low enrollment that ensures maximum attention to student writing and opportunity for oral expression, and a writing fellow/tutor is available for consultation on drafts and revisions. This is a HASS -CI course.  Like other communications-intensive courses in the humanities, arts, and social sciences, it allows students to produce 20 pages of polished writing with careful attention to revision.  It also offers substantial opportunities for oral expression, through presentations of written work, student-led discussion, and class participation.  The class has a low enrollment that ensures maximum attention to student writing and opportunity for oral expression, and a writing fellow/tutor is available for consultation on drafts and revisions.

Subjects

composition | composition | Revision | Revision | Emily Dickenson | Emily Dickenson | Robert Frost | Robert Frost | Journal | Journal

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21M.220 Early Music (MIT) 21M.220 Early Music (MIT)

Description

Includes audio/video content: AV selected lectures. This course examines European music from the early Middle Ages until the end of the Renaissance. It includes a chronological survey and intensive study of three topics: chant and its development, music in Italy 1340-1420, and music in Elizabethan England. Instruction focuses on methods and pitfalls in studying music of the distant past. Students' papers, problem sets, and presentations explore lives, genres, and works in depth. Works are studied in facsimile of original notation, and from original manuscripts at MIT, where possible. Includes audio/video content: AV selected lectures. This course examines European music from the early Middle Ages until the end of the Renaissance. It includes a chronological survey and intensive study of three topics: chant and its development, music in Italy 1340-1420, and music in Elizabethan England. Instruction focuses on methods and pitfalls in studying music of the distant past. Students' papers, problem sets, and presentations explore lives, genres, and works in depth. Works are studied in facsimile of original notation, and from original manuscripts at MIT, where possible.

Subjects

musicology | musicology | music history | music history | music composition | music composition | medieval music | medieval music | church music | church music | chant | chant | Gregorian chant | Gregorian chant | religious music | religious music | liturgy | liturgy | monody | monody | polyphony | polyphony | Trecento | Trecento | Elizabethan London | Elizabethan London | motet | motet | madrigal | madrigal | Renaissance | Renaissance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21M.380 Music and Technology: Live Electronics Performance Practices (MIT) 21M.380 Music and Technology: Live Electronics Performance Practices (MIT)

Description

Includes audio/video content: AV special element video, AV special element audio. This course is a creative, hands-on exploration of contemporary and historical approaches to live electronics performance and improvisation, including basic analog instrument design, computer synthesis programming, and hardware and software interface design. Includes audio/video content: AV special element video, AV special element audio. This course is a creative, hands-on exploration of contemporary and historical approaches to live electronics performance and improvisation, including basic analog instrument design, computer synthesis programming, and hardware and software interface design.

Subjects

Music composition | Music composition | music history | music history | computer music | computer music | music performance | music performance | electronic music | electronic music | contemporary music | contemporary music | music synthesis | music synthesis | improvisation | improvisation | analog electronics | analog electronics | live electronic music | live electronic music | electroacoustic improvisation | electroacoustic improvisation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21M.542 Interdisciplinary Approaches to Musical Time (MIT) 21M.542 Interdisciplinary Approaches to Musical Time (MIT)

Description

Includes audio/video content: AV special element video, AV selected lectures, AV special element audio. This course is an interdisciplinary exploration of three broad topics concerning music in relation to time.Music as Architecture: the creation of musical shapes in time;Music as Memory: how musical understanding depends upon memory and reminiscence, with attention to analysis of musical structures; andTime as the Substance of Music: how different disciplines such as philosophy and neuroscience view the temporal dimension of musical processes and/or performances.Classroom discussion of these topics is complemented by three weekend concerts with pre-concert forums, jointly presented by the Boston Chamber Music Society (BCMS) and MIT Music & Theater Arts. Includes audio/video content: AV special element video, AV selected lectures, AV special element audio. This course is an interdisciplinary exploration of three broad topics concerning music in relation to time.Music as Architecture: the creation of musical shapes in time;Music as Memory: how musical understanding depends upon memory and reminiscence, with attention to analysis of musical structures; andTime as the Substance of Music: how different disciplines such as philosophy and neuroscience view the temporal dimension of musical processes and/or performances.Classroom discussion of these topics is complemented by three weekend concerts with pre-concert forums, jointly presented by the Boston Chamber Music Society (BCMS) and MIT Music & Theater Arts.

Subjects

musical analysis | musical analysis | music theory | music theory | music appreciation | music appreciation | music composition | music composition | music performance | music performance | temporality | temporality | physics | physics | memory | memory | film score | film score | poetry | poetry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21M.380 Music and Technology (Contemporary History and Aesthetics) (MIT) 21M.380 Music and Technology (Contemporary History and Aesthetics) (MIT)

Description

Includes audio/video content: AV selected lectures, AV special element audio. This course is an investigation into the history and aesthetics of music and technology as deployed in experimental and popular musics from the 19th century to the present. Through original research, creative hands-on projects, readings, and lectures, the following topics will be explored. The history of radio, audio recording, and the recording studio, as well as the development of musique concrète and early electronic instruments. The creation and extension of musical interfaces by composers such as Harry Partch, John Cage, Conlon Nancarrow, and others. The exploration of electromagnetic technologies in pickups, and the development of dub, hip-hop, and turntablism. The history and application of the analog syn Includes audio/video content: AV selected lectures, AV special element audio. This course is an investigation into the history and aesthetics of music and technology as deployed in experimental and popular musics from the 19th century to the present. Through original research, creative hands-on projects, readings, and lectures, the following topics will be explored. The history of radio, audio recording, and the recording studio, as well as the development of musique concrète and early electronic instruments. The creation and extension of musical interfaces by composers such as Harry Partch, John Cage, Conlon Nancarrow, and others. The exploration of electromagnetic technologies in pickups, and the development of dub, hip-hop, and turntablism. The history and application of the analog syn

Subjects

audio | audio | music technology | music technology | sound recording | sound recording | sound reproduction | sound reproduction | contemporary music | contemporary music | experimental music | experimental music | electronic music | electronic music | synthesis | synthesis | synthesizers | synthesizers | music history | music history | music software | music software | analog recording | analog recording | digital recording | digital recording | digital audio | digital audio | music composition | music composition | computer music | computer music | Musique concr?te | Musique concr?te | rock music | rock music | rock and roll | rock and roll | hip hop | hip hop | circuit bending | circuit bending | phonograph | phonograph | radio | radio | noise music | noise music | recording studio | recording studio | sequencer | sequencer | sampling | sampling | sampler | sampler | sound art | sound art | electric guitar | electric guitar | turntablism | turntablism | scratching | scratching | electro-acoustic music | electro-acoustic music | music copyright | music copyright

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21M.304 Writing in Tonal Forms II (MIT) 21M.304 Writing in Tonal Forms II (MIT)

Description

Includes audio/video content: AV selected lectures, AV special element audio. This course builds on the composition techniques practiced in 21M.303 Writing in Tonal Forms I. Students undertake further written and analytic exercises in tonal music, including a sonata-form movement for string quartet. Students will also have the opportunity to write short works that experiment with the expanded tonal techniques of the late 19th and early 20th centuries. Musicianship laboratory is required. Includes audio/video content: AV selected lectures, AV special element audio. This course builds on the composition techniques practiced in 21M.303 Writing in Tonal Forms I. Students undertake further written and analytic exercises in tonal music, including a sonata-form movement for string quartet. Students will also have the opportunity to write short works that experiment with the expanded tonal techniques of the late 19th and early 20th centuries. Musicianship laboratory is required.

Subjects

composition | composition | composing | composing | listening | listening | form | form | structure | structure | harmony | harmony | melody | melody | rhythm | rhythm | motif | motif | theme | theme | voicing | voicing | chord | chord | scale | scale | cadence | cadence | tonality | tonality | tonal music | tonal music | atonal music | atonal music | phrasing | phrasing | canon | canon | classical music | classical music | chamber music | chamber music | aesthetics | aesthetics | musical analysis | musical analysis | string quartet | string quartet | prokofiev | prokofiev | sonata form | sonata form | Haydn | Haydn | Mozart | Mozart | Beethoven | Beethoven

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21M.303 Writing in Tonal Forms I (MIT) 21M.303 Writing in Tonal Forms I (MIT)

Description

Includes audio/video content: AV special element audio, AV special element video, AV special element audio. Written and analytic exercises based on 18th- and 19th-century small forms and harmonic practice found in music such as the chorale preludes of Bach; minuets and trios of Haydn, Mozart, and Beethoven; and the songs and character pieces of Schubert and Schumann. Musicianship laboratory is required. Includes audio/video content: AV special element audio, AV special element video, AV special element audio. Written and analytic exercises based on 18th- and 19th-century small forms and harmonic practice found in music such as the chorale preludes of Bach; minuets and trios of Haydn, Mozart, and Beethoven; and the songs and character pieces of Schubert and Schumann. Musicianship laboratory is required.

Subjects

composition | composition | composing | composing | listening | listening | form | form | structure | structure | harmony | harmony | melody | melody | rhythm | rhythm | motif | motif | theme | theme | voicing | voicing | chord | chord | scale | scale | cadence | cadence | tonality | tonality | tonal music | tonal music | phrasing | phrasing | canon | canon | classical music | classical music | chamber music | chamber music | aesthetics | aesthetics | musical analysis | musical analysis | romantic music | romantic music | romantic poetry | romantic poetry | lieder | lieder | string quartet | string quartet

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata