Searching for conceive : 13 results found | RSS Feed for this search

1

16.83X Space Systems Engineering (MIT) 16.83X Space Systems Engineering (MIT)

Description

Space Systems Engineering (16.83X) is the astronautical capstone course option in the Department of Aeronautics and Astronautics.  Between Spring 2002 and Spring 2003, the course was offered in a 3-semester format, using a Conceive, Design, Implement and Operate (C-D-I-O) teaching model. 16.83X is shorthand for the three course numbers: 16.83, 16.831, and 16.832. The first semester (16.83) is the Conceive-Design phase of the project, which results in a detailed system design, but precedes assembly.  The second semester (16.831) is the Implement phase, and involves building the students' system.  The final semester (16.832) is the Operate phase, in which the system is tested and readied to perform in its intended environment. This year's project obj Space Systems Engineering (16.83X) is the astronautical capstone course option in the Department of Aeronautics and Astronautics.  Between Spring 2002 and Spring 2003, the course was offered in a 3-semester format, using a Conceive, Design, Implement and Operate (C-D-I-O) teaching model. 16.83X is shorthand for the three course numbers: 16.83, 16.831, and 16.832. The first semester (16.83) is the Conceive-Design phase of the project, which results in a detailed system design, but precedes assembly.  The second semester (16.831) is the Implement phase, and involves building the students' system.  The final semester (16.832) is the Operate phase, in which the system is tested and readied to perform in its intended environment. This year's project obj

Subjects

space systems engineering | space systems engineering | CDIO | CDIO | conceive | conceive | design | design | implement | implement | operate | operate | trajectory analysis | trajectory analysis | entry dynamics | entry dynamics | propulsion | propulsion | power | power | structural design | structural design | avionics | avionics | thermal control | thermal control | environmental control | environmental control | human factors | human factors | support systems | support systems | weight estimates | weight estimates | cost estimates | cost estimates | student projects | student projects | integrated vehicle design | integrated vehicle design | team communication | team communication | electromagnetic formation flight | electromagnetic formation flight | satellites | satellites | TARR preparation | TARR preparation | subsystem design | subsystem design | subsystem prototyping | subsystem prototyping | trade analysis and requirements review | trade analysis and requirements review

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.000 How and Why Machines Work (MIT) 2.000 How and Why Machines Work (MIT)

Description

Subject studies how and why machines work, how they are conceived, how they are developed (drawn), and how they are utilized. Students learn from the hands-on experiences of taking things apart mentally and physically, drawing (sketching, 3D CAD) what they envision and observe, taking occasional field trips, and completing an individual term project (concept, creation, and presentation). Emphasis on understanding the physics and history of machines. Subject studies how and why machines work, how they are conceived, how they are developed (drawn), and how they are utilized. Students learn from the hands-on experiences of taking things apart mentally and physically, drawing (sketching, 3D CAD) what they envision and observe, taking occasional field trips, and completing an individual term project (concept, creation, and presentation). Emphasis on understanding the physics and history of machines.

Subjects

machines | machines | conceived | conceived | developed | developed | drawn | drawn | hands-on experience | hands-on experience | sketching | sketching | field trips | field trips | history | history

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.391 Concept-Centered Teaching (MIT) 7.391 Concept-Centered Teaching (MIT)

Description

Do you like teaching, but find yourself frustrated by how little students seem to learn? Would you like to try teaching, but are nervous about whether you will be any good at it? Are you interested in new research on science education? Research in science education shows that the greatest obstacle to student learning is the failure to identify and confront the misconceptions with which the students enter the class or those that they acquire during their studies. This weekly seminar course focuses on developing the participants' ability to uncover and confront student misconceptions and to foster student understanding and retention of key concepts. Participants read primary literature on science education, uncover basic concepts often overlooked when teaching biology, and lead a small week Do you like teaching, but find yourself frustrated by how little students seem to learn? Would you like to try teaching, but are nervous about whether you will be any good at it? Are you interested in new research on science education? Research in science education shows that the greatest obstacle to student learning is the failure to identify and confront the misconceptions with which the students enter the class or those that they acquire during their studies. This weekly seminar course focuses on developing the participants' ability to uncover and confront student misconceptions and to foster student understanding and retention of key concepts. Participants read primary literature on science education, uncover basic concepts often overlooked when teaching biology, and lead a small week

Subjects

teaching | teaching | learning | learning | concept-centered | concept-centered | education | education | science education | science education | biology | biology | student learning | student learning | misconceptions | misconceptions | studies | studies | biology teaching | biology teaching | teaching environment | teaching environment | pre-conceived notions | pre-conceived notions | learning environment | learning environment | classroom | classroom | cooperative learning | cooperative learning | group learning | group learning | assessment | assessment | multiple intelligences | multiple intelligences

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.391 Concept-Centered Teaching (MIT) 7.391 Concept-Centered Teaching (MIT)

Description

Do you like teaching, but find yourself frustrated by how little students seem to learn? Would you like to try teaching, but are nervous about whether you will be any good at it? Are you interested in new research on science education? Research in science education shows that the greatest obstacle to student learning is the failure to identify and confront the misconceptions with which the students enter the class or those that they acquire during their studies. This weekly seminar course focuses on developing the participants' ability to uncover and confront student misconceptions and to foster student understanding and retention of key concepts. Participants read primary literature on science education, uncover basic concepts often overlooked when teaching biology, and lead a small week Do you like teaching, but find yourself frustrated by how little students seem to learn? Would you like to try teaching, but are nervous about whether you will be any good at it? Are you interested in new research on science education? Research in science education shows that the greatest obstacle to student learning is the failure to identify and confront the misconceptions with which the students enter the class or those that they acquire during their studies. This weekly seminar course focuses on developing the participants' ability to uncover and confront student misconceptions and to foster student understanding and retention of key concepts. Participants read primary literature on science education, uncover basic concepts often overlooked when teaching biology, and lead a small week

Subjects

teaching | teaching | learning | learning | concept-centered | concept-centered | education | education | science education | science education | biology | biology | student learning | student learning | misconceptions | misconceptions | studies | studies | biology teaching | biology teaching | teaching environment | teaching environment | pre-conceived notions | pre-conceived notions | learning environment | learning environment | classroom | classroom | cooperative learning | cooperative learning | group learning | group learning | assessment | assessment | multiple intelligences | multiple intelligences

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.000 How and Why Machines Work (MIT)

Description

Subject studies how and why machines work, how they are conceived, how they are developed (drawn), and how they are utilized. Students learn from the hands-on experiences of taking things apart mentally and physically, drawing (sketching, 3D CAD) what they envision and observe, taking occasional field trips, and completing an individual term project (concept, creation, and presentation). Emphasis on understanding the physics and history of machines.

Subjects

machines | conceived | developed | drawn | hands-on experience | sketching | field trips | history

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.391 Concept-Centered Teaching (MIT)

Description

Do you like teaching, but find yourself frustrated by how little students seem to learn? Would you like to try teaching, but are nervous about whether you will be any good at it? Are you interested in new research on science education? Research in science education shows that the greatest obstacle to student learning is the failure to identify and confront the misconceptions with which the students enter the class or those that they acquire during their studies. This weekly seminar course focuses on developing the participants' ability to uncover and confront student misconceptions and to foster student understanding and retention of key concepts. Participants read primary literature on science education, uncover basic concepts often overlooked when teaching biology, and lead a small week

Subjects

teaching | learning | concept-centered | education | science education | biology | student learning | misconceptions | studies | biology teaching | teaching environment | pre-conceived notions | learning environment | classroom | cooperative learning | group learning | assessment | multiple intelligences

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.391 Concept-Centered Teaching (MIT)

Description

Do you like teaching, but find yourself frustrated by how little students seem to learn? Would you like to try teaching, but are nervous about whether you will be any good at it? Are you interested in new research on science education? Research in science education shows that the greatest obstacle to student learning is the failure to identify and confront the misconceptions with which the students enter the class or those that they acquire during their studies. This weekly seminar course focuses on developing the participants' ability to uncover and confront student misconceptions and to foster student understanding and retention of key concepts. Participants read primary literature on science education, uncover basic concepts often overlooked when teaching biology, and lead a small week

Subjects

teaching | learning | concept-centered | education | science education | biology | student learning | misconceptions | studies | biology teaching | teaching environment | pre-conceived notions | learning environment | classroom | cooperative learning | group learning | assessment | multiple intelligences

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified Engineering | aerospace | CDIO | C-D-I-O | conceive | design | implement | operate | team | team-based | discipline | materials | structures | materials and structures | computers | programming | computers and programming | fluids | fluid mechanics | thermodynamics | propulsion | signals | systems | signals and systems | systems problems | fundamentals | technical communication | graphical communication | communication | reading | research | experimentation | personal response system | prs | active learning | First law | first law of thermodynamics | thermo-mechanical | energy | energy conversion | aerospace power systems | propulsion systems | aerospace propulsion systems | heat | work | thermal efficiency | forms of energy | energy exchange | processes | heat engines | engines | steady-flow energy equation | energy flow | flows | path-dependence | path-independence | reversibility | irreversibility | state | thermodynamic state | performance | ideal cycle | simple heat engine | cycles | thermal pressures | temperatures | linear static networks | loop method | node method | linear dynamic networks | classical methods | state methods | state concepts | dynamic systems | resistive circuits | sources | voltages | currents | Thevinin | Norton | initial value problems | RLC networks | characteristic values | characteristic vectors | transfer function | ada | ada programming | programming language | software systems | programming style | computer architecture | program language evolution | classification | numerical computation | number representation systems | assembly | SimpleSIM | RISC | CISC | operating systems | single user | multitasking | multiprocessing | domain-specific classification | recursive | execution time | fluid dynamics | physical properties of a fluid | fluid flow | mach | reynolds | conservation | conservation principles | conservation of mass | conservation of momentum | conservation of energy | continuity | inviscid | steady flow | simple bodies | airfoils | wings | channels | aerodynamics | forces | moments | equilibrium | freebody diagram | free-body | free body | planar force systems | equipollent systems | equipollence | support reactions | reactions | static determinance | determinate systems | truss analysis | trusses | method of joints | method of sections | statically indeterminate | three great principles | 3 great principles | indicial notation | rotation of coordinates | coordinate rotation | stress | extensional stress | shear stress | notation | plane stress | stress equilbrium | stress transformation | mohr | mohr's circle | principal stress | principal stresses | extreme shear stress | strain | extensional strain | shear strain | strain-displacement | compatibility | strain transformation | transformation of strain | mohr's circle for strain | principal strain | extreme shear strain | uniaxial stress-strain | material properties | classes of materials | bulk material properties | origin of elastic properties | structures of materials | atomic bonding | packing of atoms | atomic packing | crystals | crystal structures | polymers | estimate of moduli | moduli | composites | composite materials | modulus limited design | material selection | materials selection | measurement of elastic properties | stress-strain | stress-strain relations | anisotropy | orthotropy | measurements | engineering notation | Hooke | Hooke's law | general hooke's law | equations of elasticity | boundary conditions | multi-disciplinary | models | engineering systems | experiments | investigations | experimental error | design evaluation | evaluation | trade studies | effects of engineering | social context | engineering drawings | 16.01 | 16.02 | 16.03 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.83X Space Systems Engineering (MIT)

Description

Space Systems Engineering (16.83X) is the astronautical capstone course option in the Department of Aeronautics and Astronautics.  Between Spring 2002 and Spring 2003, the course was offered in a 3-semester format, using a Conceive, Design, Implement and Operate (C-D-I-O) teaching model. 16.83X is shorthand for the three course numbers: 16.83, 16.831, and 16.832. The first semester (16.83) is the Conceive-Design phase of the project, which results in a detailed system design, but precedes assembly.  The second semester (16.831) is the Implement phase, and involves building the students' system.  The final semester (16.832) is the Operate phase, in which the system is tested and readied to perform in its intended environment. This year's project obj

Subjects

space systems engineering | CDIO | conceive | design | implement | operate | trajectory analysis | entry dynamics | propulsion | power | structural design | avionics | thermal control | environmental control | human factors | support systems | weight estimates | cost estimates | student projects | integrated vehicle design | team communication | electromagnetic formation flight | satellites | TARR preparation | subsystem design | subsystem prototyping | trade analysis and requirements review

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata