Searching for concrete : 137 results found | RSS Feed for this search

1 2 3 4 5

1.054 Mechanics and Design of Concrete Structures (MIT) 1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | concrete structures | mechanics | mechanics | design | design | strength | strength | deformation | deformation | stress | stress | strain | strain | failure criteria | failure criteria | concrete plasticity | concrete plasticity | fracture mechanics | fracture mechanics | reinforced concrete | reinforced concrete | code constraints | code constraints | high-performance materials | high-performance materials | slabs | slabs | yield line theory | yield line theory | behavior models | behavior models | nonlinear analysis | nonlinear analysis | bridge structures | bridge structures | concrete shells | concrete shells | containments | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

CALVisual Images : Loughborough University Busines School Development

Description

A collection of 68 images of Loughborough Business School development for use in teaching civil engineering.

Subjects

development | preparation of foundations | laying foundations | reinforced concrete columns | structural frame assembly | cement mixer | concrete cast in situ | waterproofing to in situ concrete | ceiling supports | tower crane | falsework | staircase | concrete floor slab | access panels | structural steelwork | profiled roof sheeting | wall cladding | ukoer | engscoer | loughboroughunioer | loughborough university business school | construction site | fencing off | Engineering | H000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | mechanics | design | strength | deformation | stress | strain | failure criteria | concrete plasticity | fracture mechanics | reinforced concrete | code constraints | high-performance materials | slabs | yield line theory | behavior models | nonlinear analysis | bridge structures | concrete shells | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata