Searching for congruences : 23 results found | RSS Feed for this search

1

18.304 Undergraduate Seminar in Discrete Mathematics (MIT) 18.304 Undergraduate Seminar in Discrete Mathematics (MIT)

Description

This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic. This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic.

Subjects

discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math | discrete math | discrete mathematics | discrete mathematics | discrete | discrete | math | math | mathematics | mathematics | seminar | seminar | presentations | presentations | student presentations | student presentations | oral | oral | communication | communication | stable marriage | stable marriage | dych | dych | emergency | emergency | response vehicles | response vehicles | ambulance | ambulance | game theory | game theory | congruences | congruences | color theorem | color theorem | four color | four color | cake cutting | cake cutting | algorithm | algorithm | RSA | RSA | encryption | encryption | numberical integration | numberical integration | sorting | sorting | post correspondence problem | post correspondence problem | PCP | PCP | ramsey | ramsey | van der waals | van der waals | fibonacci | fibonacci | recursion | recursion | domino | domino | tiling | tiling | towers | towers | hanoi | hanoi | pigeonhole | pigeonhole | principle | principle | matrix | matrix | hamming | hamming | code | code | hat game | hat game | juggling | juggling | zero-knowledge | zero-knowledge | proof | proof | repeated games | repeated games | lewis carroll | lewis carroll | determinants | determinants | infinitude of primes | infinitude of primes | bridges | bridges | konigsberg | konigsberg | koenigsberg | koenigsberg | time series analysis | time series analysis | GARCH | GARCH | rational | rational | recurrence | recurrence | relations | relations | digital | digital | image | image | compression | compression | quantum computing | quantum computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.304 Undergraduate Seminar in Discrete Mathematics (MIT) 18.304 Undergraduate Seminar in Discrete Mathematics (MIT)

Description

This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic. This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic.

Subjects

discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math | discrete math | discrete mathematics | discrete mathematics | discrete | discrete | math | math | mathematics | mathematics | seminar | seminar | presentations | presentations | student presentations | student presentations | oral | oral | communication | communication | stable marriage | stable marriage | dych | dych | emergency | emergency | response vehicles | response vehicles | ambulance | ambulance | game theory | game theory | congruences | congruences | color theorem | color theorem | four color | four color | cake cutting | cake cutting | algorithm | algorithm | RSA | RSA | encryption | encryption | numberical integration | numberical integration | sorting | sorting | post correspondence problem | post correspondence problem | PCP | PCP | ramsey | ramsey | van der waals | van der waals | fibonacci | fibonacci | recursion | recursion | domino | domino | tiling | tiling | towers | towers | hanoi | hanoi | pigeonhole | pigeonhole | principle | principle | matrix | matrix | hamming | hamming | code | code | hat game | hat game | juggling | juggling | zero-knowledge | zero-knowledge | proof | proof | repeated games | repeated games | lewis carroll | lewis carroll | determinants | determinants | infinitude of primes | infinitude of primes | bridges | bridges | konigsberg | konigsberg | koenigsberg | koenigsberg | time series analysis | time series analysis | GARCH | GARCH | rational | rational | recurrence | recurrence | relations | relations | digital | digital | image | image | compression | compression | quantum computing | quantum computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.781 Theory of Numbers (MIT) 18.781 Theory of Numbers (MIT)

Description

This course is an elementary introduction to number theory with no algebraic prerequisites. Topics covered include primes, congruences, quadratic reciprocity, diophantine equations, irrational numbers, continued fractions, and partitions.    This course is an elementary introduction to number theory with no algebraic prerequisites. Topics covered include primes, congruences, quadratic reciprocity, diophantine equations, irrational numbers, continued fractions, and partitions.   

Subjects

primes | primes | divisibility | divisibility | fundamental theorem of arithmetic | fundamental theorem of arithmetic | gcd | gcd | Euclidean algorithm | Euclidean algorithm | congruences | congruences | Chinese remainder theorem | Chinese remainder theorem | Hensel's lemma | Hensel's lemma | primitive roots | primitive roots | quadratic residues | quadratic residues | reciprocity | reciprocity | arithmetic functions | arithmetic functions | Diophantine equations | Diophantine equations | continued fractions | continued fractions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.S34 Problem Solving Seminar (MIT) 18.S34 Problem Solving Seminar (MIT)

Description

This course,which is geared toward Freshmen, is an undergraduate seminar on mathematical problem solving. It is intended for students who enjoy solving challenging mathematical problems and who are interested in learning various techniques and background information useful for problem solving. Students in this course are expected to compete in a nationwide mathematics contest for undergraduates. This course,which is geared toward Freshmen, is an undergraduate seminar on mathematical problem solving. It is intended for students who enjoy solving challenging mathematical problems and who are interested in learning various techniques and background information useful for problem solving. Students in this course are expected to compete in a nationwide mathematics contest for undergraduates.

Subjects

Pigeonhole Principle | Pigeonhole Principle | probability | probability | congruences and divisibility | congruences and divisibility | recurrences | recurrences | limits | limits | greatest integer function | greatest integer function | inequalities | inequalities | Putnam practice | Putnam practice | hidden independence | hidden independence | roots of polynomials | roots of polynomials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

Includes audio/video content: AV lectures. This subject offers an interactive introduction to discrete mathematics oriented toward computer science and engineering. The subject coverage divides roughly into thirds: Fundamental concepts of mathematics: Definitions, proofs, sets, functions, relations. Discrete structures: graphs, state machines, modular arithmetic, counting. Discrete probability theory. On completion of 6.042J, students will be able to explain and apply the basic methods of discrete (noncontinuous) mathematics in computer science. They will be able to use these methods in subsequent courses in the design and analysis of algorithms, computability theory, software engineering, and computer systems.Interactive site components can be found on the Unit pages in the Includes audio/video content: AV lectures. This subject offers an interactive introduction to discrete mathematics oriented toward computer science and engineering. The subject coverage divides roughly into thirds: Fundamental concepts of mathematics: Definitions, proofs, sets, functions, relations. Discrete structures: graphs, state machines, modular arithmetic, counting. Discrete probability theory. On completion of 6.042J, students will be able to explain and apply the basic methods of discrete (noncontinuous) mathematics in computer science. They will be able to use these methods in subsequent courses in the design and analysis of algorithms, computability theory, software engineering, and computer systems.Interactive site components can be found on the Unit pages in the

Subjects

6.042 | 6.042 | 18.062 | 18.062 | formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | sets | sets | relations | relations | graph theory | graph theory | integer congruences | integer congruences | asymptotic notation | asymptotic notation | growth of functions | growth of functions | permutations | permutations | combinations | combinations | counting | counting | discrete probability | discrete probability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.S34 Problem Solving Seminar (MIT) 18.S34 Problem Solving Seminar (MIT)

Description

This course, which is geared toward Freshmen, is an undergraduate seminar on mathematical problem solving. It is intended for students who enjoy solving challenging mathematical problems and who are interested in learning various techniques and background information useful for problem solving. Students in this course are expected to compete in a nationwide mathematics contest for undergraduates. This course, which is geared toward Freshmen, is an undergraduate seminar on mathematical problem solving. It is intended for students who enjoy solving challenging mathematical problems and who are interested in learning various techniques and background information useful for problem solving. Students in this course are expected to compete in a nationwide mathematics contest for undergraduates.

Subjects

Pigeonhole Principle | Pigeonhole Principle | probability | probability | congruences and divisibility | congruences and divisibility | recurrences | recurrences | limits | limits | greatest integer function | greatest integer function | inequalities | inequalities | Putnam practice | Putnam practice | hidden independence | hidden independence | roots of polynomials | roots of polynomials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.304 Undergraduate Seminar in Discrete Mathematics (MIT)

Description

This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic.

Subjects

discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math | discrete mathematics | discrete | math | mathematics | seminar | presentations | student presentations | oral | communication | stable marriage | dych | emergency | response vehicles | ambulance | game theory | congruences | color theorem | four color | cake cutting | algorithm | RSA | encryption | numberical integration | sorting | post correspondence problem | PCP | ramsey | van der waals | fibonacci | recursion | domino | tiling | towers | hanoi | pigeonhole | principle | matrix | hamming | code | hat game | juggling | zero-knowledge | proof | repeated games | lewis carroll | determinants | infinitude of primes | bridges | konigsberg | koenigsberg | time series analysis | GARCH | rational | recurrence | relations | digital | image | compression | quantum computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.781 Theory of Numbers (MIT) 18.781 Theory of Numbers (MIT)

Description

This course provides an elementary introduction to number theory with no algebraic prerequisites. Topics include primes, congruences, quadratic reciprocity, diophantine equations, irrational numbers, continued fractions and elliptic curves. This course provides an elementary introduction to number theory with no algebraic prerequisites. Topics include primes, congruences, quadratic reciprocity, diophantine equations, irrational numbers, continued fractions and elliptic curves.

Subjects

number theory with no algebraic prerequisites | number theory with no algebraic prerequisites | primes | congruences | primes | congruences | quadratic reciprocity | quadratic reciprocity | diophantine equations | diophantine equations | irrational numbers | irrational numbers | continued fractions | continued fractions | partitions | partitions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental Concepts of Mathematics: Definitions, Proofs, Sets, Functions, Relations Discrete Structures: Modular Arithmetic, Graphs, State Machines, Counting Discrete Probability Theory A version of this course from a previous term was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science). This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental Concepts of Mathematics: Definitions, Proofs, Sets, Functions, Relations Discrete Structures: Modular Arithmetic, Graphs, State Machines, Counting Discrete Probability Theory A version of this course from a previous term was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science).

Subjects

mathematical definitions | mathematical definitions | proofs and applicable methods | proofs and applicable methods | formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | well-ordering | well-ordering | sets | sets | relations | relations | elementary graph theory | elementary graph theory | integer congruences | integer congruences | asymptotic notation and growth of functions | asymptotic notation and growth of functions | permutations and combinations | counting principles | permutations and combinations | counting principles | discrete probability | discrete probability | recursive definition | recursive definition | structural induction | structural induction | state machines and invariants | state machines and invariants | recurrences | recurrences | generating functions | generating functions | permutations and combinations | permutations and combinations | counting principles | counting principles | discrete mathematics | discrete mathematics | computer science | computer science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability. This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability.

Subjects

Elementary discrete mathematics for computer science and engineering | Elementary discrete mathematics for computer science and engineering | mathematical definitions | mathematical definitions | proofs and applicable methods | proofs and applicable methods | formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | well-ordering | well-ordering | sets | sets | relations | relations | elementary graph theory | elementary graph theory | integer congruences | integer congruences | asymptotic notation and growth of functions | asymptotic notation and growth of functions | permutations and combinations | permutations and combinations | counting principles | counting principles | discrete probability | discrete probability | recursive definition | recursive definition | structural induction | structural induction | state machines and invariants | state machines and invariants | recurrences | recurrences | generating functions | generating functions | 6.042 | 6.042 | 18.062 | 18.062

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

Includes audio/video content: AV lectures. This course covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions. Includes audio/video content: AV lectures. This course covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.

Subjects

formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | sets | sets | relations | relations | graph theory | graph theory | integer congruences | integer congruences | asymptotic notation | asymptotic notation | growth of functions | growth of functions | permutations | permutations | combinations | combinations | counting | counting | discrete probability | discrete probability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability. This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability.

Subjects

Elementary discrete mathematics for computer science and engineering | Elementary discrete mathematics for computer science and engineering | mathematical definitions | mathematical definitions | proofs and applicable methods | proofs and applicable methods | formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | well-ordering | well-ordering | sets | sets | relations | relations | elementary graph theory | elementary graph theory | integer congruences | integer congruences | asymptotic notation and growth of functions | asymptotic notation and growth of functions | permutations and combinations | permutations and combinations | counting principles | counting principles | discrete probability | discrete probability | recursive definition | recursive definition | structural induction | structural induction | state machines and invariants | state machines and invariants | recurrences | recurrences | generating functions | generating functions | 6.042 | 6.042 | 18.062 | 18.062

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.S34 Problem Solving Seminar (MIT) 18.S34 Problem Solving Seminar (MIT)

Description

This course is an undergraduate seminar on mathematical problem solving. It is intended for students who enjoy solving challenging mathematical problems and who are interested in learning various techniques and background information useful for problem solving. This course is an undergraduate seminar on mathematical problem solving. It is intended for students who enjoy solving challenging mathematical problems and who are interested in learning various techniques and background information useful for problem solving.

Subjects

Pigeonhole Principle | Pigeonhole Principle | probability | probability | congruences and divisibility | congruences and divisibility | recurrences | recurrences | limits | limits | greatest integer function | greatest integer function | inequalities | inequalities | Putnam practice | Putnam practice | hidden independence | hidden independence | roots of polynomials | roots of polynomials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT)

Description

This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental Concepts of Mathematics: Definitions, Proofs, Sets, Functions, Relations Discrete Structures: Modular Arithmetic, Graphs, State Machines, Counting Discrete Probability Theory A version of this course from a previous term was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science).

Subjects

mathematical definitions | proofs and applicable methods | formal logic notation | proof methods | induction | well-ordering | sets | relations | elementary graph theory | integer congruences | asymptotic notation and growth of functions | permutations and combinations | counting principles | discrete probability | recursive definition | structural induction | state machines and invariants | recurrences | generating functions | permutations and combinations | counting principles | discrete mathematics | computer science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT)

Description

This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability.

Subjects

Elementary discrete mathematics for computer science and engineering | mathematical definitions | proofs and applicable methods | formal logic notation | proof methods | induction | well-ordering | sets | relations | elementary graph theory | integer congruences | asymptotic notation and growth of functions | permutations and combinations | counting principles | discrete probability | recursive definition | structural induction | state machines and invariants | recurrences | generating functions | 6.042 | 18.062

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.781 Theory of Numbers (MIT)

Description

This course is an elementary introduction to number theory with no algebraic prerequisites. Topics covered include primes, congruences, quadratic reciprocity, diophantine equations, irrational numbers, continued fractions, and partitions.   

Subjects

primes | divisibility | fundamental theorem of arithmetic | gcd | Euclidean algorithm | congruences | Chinese remainder theorem | Hensel's lemma | primitive roots | quadratic residues | reciprocity | arithmetic functions | Diophantine equations | continued fractions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.S34 Problem Solving Seminar (MIT)

Description

This course, which is geared toward Freshmen, is an undergraduate seminar on mathematical problem solving. It is intended for students who enjoy solving challenging mathematical problems and who are interested in learning various techniques and background information useful for problem solving. Students in this course are expected to compete in a nationwide mathematics contest for undergraduates.

Subjects

Pigeonhole Principle | probability | congruences and divisibility | recurrences | limits | greatest integer function | inequalities | Putnam practice | hidden independence | roots of polynomials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT)

Description

This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental Concepts of Mathematics: Definitions, Proofs, Sets, Functions, Relations Discrete Structures: Modular Arithmetic, Graphs, State Machines, Counting Discrete Probability Theory A version of this course from a previous term was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science).

Subjects

mathematical definitions | proofs and applicable methods | formal logic notation | proof methods | induction | well-ordering | sets | relations | elementary graph theory | integer congruences | asymptotic notation and growth of functions | permutations and combinations | counting principles | discrete probability | recursive definition | structural induction | state machines and invariants | recurrences | generating functions | permutations and combinations | counting principles | discrete mathematics | computer science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.S34 Problem Solving Seminar (MIT)

Description

This course is an undergraduate seminar on mathematical problem solving. It is intended for students who enjoy solving challenging mathematical problems and who are interested in learning various techniques and background information useful for problem solving.

Subjects

Pigeonhole Principle | probability | congruences and divisibility | recurrences | limits | greatest integer function | inequalities | Putnam practice | hidden independence | roots of polynomials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.S34 Problem Solving Seminar (MIT)

Description

This course,which is geared toward Freshmen, is an undergraduate seminar on mathematical problem solving. It is intended for students who enjoy solving challenging mathematical problems and who are interested in learning various techniques and background information useful for problem solving. Students in this course are expected to compete in a nationwide mathematics contest for undergraduates.

Subjects

Pigeonhole Principle | probability | congruences and divisibility | recurrences | limits | greatest integer function | inequalities | Putnam practice | hidden independence | roots of polynomials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT)

Description

This subject offers an interactive introduction to discrete mathematics oriented toward computer science and engineering. The subject coverage divides roughly into thirds: Fundamental concepts of mathematics: Definitions, proofs, sets, functions, relations. Discrete structures: graphs, state machines, modular arithmetic, counting. Discrete probability theory. On completion of 6.042J, students will be able to explain and apply the basic methods of discrete (noncontinuous) mathematics in computer science. They will be able to use these methods in subsequent courses in the design and analysis of algorithms, computability theory, software engineering, and computer systems.Interactive site components can be found on the Unit pages in the left-hand navigational bar, starting with U

Subjects

6.042 | 18.062 | formal logic notation | proof methods | induction | sets | relations | graph theory | integer congruences | asymptotic notation | growth of functions | permutations | combinations | counting | discrete probability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT)

Description

This course covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.

Subjects

formal logic notation | proof methods | induction | sets | relations | graph theory | integer congruences | asymptotic notation | growth of functions | permutations | combinations | counting | discrete probability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.781 Theory of Numbers (MIT)

Description

This course provides an elementary introduction to number theory with no algebraic prerequisites. Topics include primes, congruences, quadratic reciprocity, diophantine equations, irrational numbers, continued fractions and elliptic curves.

Subjects

number theory with no algebraic prerequisites | primes | congruences | quadratic reciprocity | diophantine equations | irrational numbers | continued fractions | partitions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata