Searching for consolidation : 88 results found | RSS Feed for this search

1 2 3 4

TALAT Lecture 1401: Aluminium Powder Metallurgy

Description

This lecture outlines the differences between conventionally produced and powder metallurgy aluminium with respect to potential uses; it aims at learning about the various processes to produce and to consolidate alloy powders; it illustrates the extension of the useful property range beyond that of limits of conventionally processed aluminium alloys; it explains the advantages and disadvantages of aluminium produced by powder metallurgy; it shows the potential of aluminium produced by the route of powder metallurgy. Knowledge in metallurgy, materials science, materials engineering is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | advanced materials | powder fabrication | rapid solidification | caracterisation | powder | precompaction | cold compaction | sintering | hot consolidation | post consolidation | spray forming | P/M 7 XXX alloys | high strength alloys | elevated temperatures | mechanical alloying | high modulus | safety | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.103 Civil Engineering Materials Laboratory (MIT) 1.103 Civil Engineering Materials Laboratory (MIT)

Description

Includes audio/video content: AV special element video. This course introduces the concepts, techniques, and devices used to measure engineering properties of materials. There is an emphasis on measurement of load-deformation characteristics and failure modes of both natural and fabricated materials. Weekly experiments include data collection, data analysis, and interpretation and presentation of results. Includes audio/video content: AV special element video. This course introduces the concepts, techniques, and devices used to measure engineering properties of materials. There is an emphasis on measurement of load-deformation characteristics and failure modes of both natural and fabricated materials. Weekly experiments include data collection, data analysis, and interpretation and presentation of results.

Subjects

materials laboratory | materials laboratory | load-deformation characteristics | load-deformation characteristics | failure modes | failure modes | experiments | experiments | data collection | data collection | data analysis | data analysis | tension | tension | elastic behavior | elastic behavior | direct shear | direct shear | friction | friction | concrete | concrete | early age properties | early age properties | compression | compression | directionality | directionality | soil classification | soil classification | consolidation test | consolidation test | heat treatment | heat treatment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.322 Soil Behavior (MIT) 1.322 Soil Behavior (MIT)

Description

This class presents a detailed study of soil properties with emphasis on interpretation of field and laboratory test data and their use in soft-ground construction engineering. Topics to be covered include: consolidation and secondary compression; basic strength principles; stress-strain strength behavior of clays, emphasizing effects of sample disturbance, anisotropy, and strain rate; strength and compression of granular soils; and engineering properties of compacted soils. Some knowledge of field and laboratory testing is assumed for all students. This class presents a detailed study of soil properties with emphasis on interpretation of field and laboratory test data and their use in soft-ground construction engineering. Topics to be covered include: consolidation and secondary compression; basic strength principles; stress-strain strength behavior of clays, emphasizing effects of sample disturbance, anisotropy, and strain rate; strength and compression of granular soils; and engineering properties of compacted soils. Some knowledge of field and laboratory testing is assumed for all students.

Subjects

soil | soil | soil composition | soil composition | clay | clay | interparticle forces | interparticle forces | soil strength | soil strength | laddite | laddite | Hvorslev parameters | Hvorslev parameters | plasticity | plasticity | stress history | stress history | consol | consol | conductivity | conductivity | compression | compression | consolidation | consolidation | problem soils | problem soils | sands | sands

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT) 1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice. This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | soil | origin and nature of soils | origin and nature of soils | soil classification | soil classification | effective stress principle | effective stress principle | hydraulic conductivity and seepage | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | bearing capacity and slope stability | consolidation theory | consolidation theory | settlement analyses | settlement analyses | laboratory methods | laboratory methods | soil properties | soil properties | design practice | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.464 E-Commerce and the Internet in Real Estate and Construction (MIT) 1.464 E-Commerce and the Internet in Real Estate and Construction (MIT)

Description

1.464 examines the long term effects of information technology on business strategy in the real estate and construction industry. Considerations include: supply chain, allocation of risk, impact on contract obligations and security, trends toward consolidation, and the convergence of information transparency and personal effectiveness. Resources are drawn from the world of dot.com entrepreneurship and "old economy" responses. 1.464 examines the long term effects of information technology on business strategy in the real estate and construction industry. Considerations include: supply chain, allocation of risk, impact on contract obligations and security, trends toward consolidation, and the convergence of information transparency and personal effectiveness. Resources are drawn from the world of dot.com entrepreneurship and "old economy" responses.

Subjects

e-commerce | e-commerce | Internet | Internet | real estate | real estate | construction | construction | information technology | information technology | business strategy | business strategy | supply chain | supply chain | risk allocation | risk allocation | contract obligations | contract obligations | consolidation | consolidation | information transparency | information transparency | case method | case method | case study | case study | industry value system | industry value system | optimization | optimization | business models | business models | incentives | incentives | game theory | game theory | strategic managment | strategic managment | knowledge management | knowledge management

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 1401: Aluminium Powder Metallurgy

Description

This lecture outlines the differences between conventionally produced and powder metallurgy aluminium with respect to potential uses; it aims at learning about the various processes to produce and to consolidate alloy powders; it illustrates the extension of the useful property range beyond that of limits of conventionally processed aluminium alloys; it explains the advantages and disadvantages of aluminium produced by powder metallurgy; it shows the potential of aluminium produced by the route of powder metallurgy. Knowledge in metallurgy, materials science, materials engineering is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | advanced materials | powder fabrication | rapid solidification | caracterisation | powder | precompaction | cold compaction | sintering | hot consolidation | post consolidation | spray forming | p/m 7 xxx alloys | high strength alloys | elevated temperatures | mechanical alloying | high modulus | safety | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Permafrost Degradation PowerPoint Presentation

Description

Part Five of Changing Permafrost Environments

Subjects

thermokarst | thawing | seasonal | active layer | process | frost heave | thaw settlement | consolidation | frost sorting | cryoturbation | geomorphology | landforms | geography | ukoer | geesoer | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.103 Civil Engineering Materials Laboratory (MIT)

Description

This course introduces the concepts, techniques, and devices used to measure engineering properties of materials. There is an emphasis on measurement of load-deformation characteristics and failure modes of both natural and fabricated materials. Weekly experiments include data collection, data analysis, and interpretation and presentation of results.

Subjects

materials laboratory | load-deformation characteristics | failure modes | experiments | data collection | data analysis | tension | elastic behavior | direct shear | friction | concrete | early age properties | compression | directionality | soil classification | consolidation test | heat treatment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Permafrost Degradation Reading List

Description

Part Five of Changing Permafrost Environments

Subjects

thermokarst | thawing | seasonal | active layer | process | frost heave | thaw settlement | consolidation | frost sorting | cryoturbation | geomorphology | geography | ukoer | geesoer | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | origin and nature of soils | soil classification | effective stress principle | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | consolidation theory | settlement analyses | laboratory methods | soil properties | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata