Searching for continuity : 38 results found | RSS Feed for this search

Description

This course discusses phase transitions in Earth's interior. Phase transitions in Earth materials at high pressures and temperatures cause the seismic discontinuities and affect the convections in the Earth's interior. On the other hand, they enable us to constrain temperature and chemical compositions in the Earth's interior. However, among many known phase transitions in mineral physics, only a few have been investigated in seismology and geodynamics. This course reviews important papers about phase transitions in mantle and core materials. This course discusses phase transitions in Earth's interior. Phase transitions in Earth materials at high pressures and temperatures cause the seismic discontinuities and affect the convections in the Earth's interior. On the other hand, they enable us to constrain temperature and chemical compositions in the Earth's interior. However, among many known phase transitions in mineral physics, only a few have been investigated in seismology and geodynamics. This course reviews important papers about phase transitions in mantle and core materials.Subjects

Earth | Earth | mantle | mantle | phase transitions | phase transitions | transition zone | transition zone | post-spinel transition | post-spinel transition | seismic discontinuities | seismic discontinuities | D'' discontinuity | D'' discontinuity | D'' anisotropy | D'' anisotropy | post-perovskite transition and spin transition | post-perovskite transition and spin transitionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.13 Aerodynamics of Viscous Fluids (MIT) 16.13 Aerodynamics of Viscous Fluids (MIT)

Description

The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included. The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.Subjects

aerodynamics | aerodynamics | viscous fluids | viscous fluids | viscosity | viscosity | fundamental theorem of kinematics | fundamental theorem of kinematics | convection | convection | vorticity | vorticity | strain | strain | Eulerian description | Eulerian description | Lagrangian description | Lagrangian description | conservation of mass | conservation of mass | continuity | continuity | conservation of momentum | conservation of momentum | stress tensor | stress tensor | newtonian fluid | newtonian fluid | circulation | circulation | Navier-Stokes | Navier-Stokes | similarity | similarity | dimensional analysis | dimensional analysis | thin shear later approximation | thin shear later approximation | TSL coordinates | TSL coordinates | boundary conditions | boundary conditions | shear later categories | shear later categories | local scaling | local scaling | Falkner-Skan flows | Falkner-Skan flows | solution techniques | solution techniques | finite difference methods | finite difference methods | Newton-Raphson | Newton-Raphson | integral momentum equation | integral momentum equation | Thwaites method | Thwaites method | integral kinetic energy equation | integral kinetic energy equation | dissipation | dissipation | asymptotic perturbation | asymptotic perturbation | displacement body | displacement body | transpiration | transpiration | form drag | form drag | stall | stall | interacting boundary layer theory | interacting boundary layer theory | stability | stability | transition | transition | small-perturbation | small-perturbation | Orr-Somemerfeld | Orr-Somemerfeld | temporal amplification | temporal amplification | spatial amplification | spatial amplification | Reynolds | Reynolds | Prandtl | Prandtl | turbulent boundary layer | turbulent boundary layer | wake | wake | wall layers | wall layers | inner variables | inner variables | outer variables | outer variables | roughness | roughness | Clauser | Clauser | Dissipation formula | Dissipation formula | integral closer | integral closer | turbulence modeling | turbulence modeling | transport models | transport models | turbulent shear layers | turbulent shear layers | compressible then shear layers | compressible then shear layers | compressibility | compressibility | temperature profile | temperature profile | heat flux | heat flux | 3D boundary layers | 3D boundary layers | crossflow | crossflow | lateral dilation | lateral dilation | 3D separation | 3D separation | constant-crossflow | constant-crossflow | 3D transition | 3D transition | compressible thin shear layers | compressible thin shear layersLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.100A Introduction to Analysis (MIT) 18.100A Introduction to Analysis (MIT)

Description

Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the plaSubjects

mathematical analysis | mathematical analysis | estimations | estimations | limit of a sequence | limit of a sequence | limit theorems | limit theorems | subsequences | subsequences | cluster points | cluster points | infinite series | infinite series | power series | power series | local and global properties | local and global properties | continuity | continuity | intermediate-value theorem | intermediate-value theorem | convexity | convexity | integrability | integrability | Riemann integral | Riemann integral | calculus | calculus | convergence | convergence | Gamma function | Gamma function | Stirling | Stirling | quantifiers and negation | quantifiers and negation | Leibniz | Leibniz | Fubini | Fubini | improper integrals | improper integrals | Lebesgue integral | Lebesgue integral | mathematical proofs | mathematical proofs | differentiation | differentiation | integration | integrationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.100B Analysis I (MIT) 18.100B Analysis I (MIT)

Description

Analysis I covers fundamentals of mathematical analysis: metric spaces, convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, interchange of limit operations. Analysis I covers fundamentals of mathematical analysis: metric spaces, convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, interchange of limit operations.Subjects

mathematical analysis | mathematical analysis | convergence of sequences | convergence of sequences | convergence of series | convergence of series | continuity | continuity | differentiability | differentiability | Riemann integral | Riemann integral | sequences and series of functions | sequences and series of functions | uniformity | uniformity | interchange of limit operations | interchange of limit operations | utility of abstract concepts | utility of abstract concepts | construction of proofs | construction of proofs | point-set topology | point-set topology | n-space | n-spaceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata3.21 Kinetic Processes in Materials (MIT) 3.21 Kinetic Processes in Materials (MIT)

Description

This course presents a unified treatment of phenomenological and atomistic kinetic processes in materials. It provides the foundation for the advanced understanding of processing, microstructural evolution, and behavior for a broad spectrum of materials. The course emphasizes analysis and development of rigorous comprehension of fundamentals. Topics include: irreversible thermodynamics; diffusion; nucleation; phase transformations; fluid and heat transport; morphological instabilities; gas-solid, liquid-solid, and solid-solid reactions. This course presents a unified treatment of phenomenological and atomistic kinetic processes in materials. It provides the foundation for the advanced understanding of processing, microstructural evolution, and behavior for a broad spectrum of materials. The course emphasizes analysis and development of rigorous comprehension of fundamentals. Topics include: irreversible thermodynamics; diffusion; nucleation; phase transformations; fluid and heat transport; morphological instabilities; gas-solid, liquid-solid, and solid-solid reactions.Subjects

Thermodynamics | Thermodynamics | field | field | gradient | gradient | continuity equation | continuity equation | irreversible thermodynamics | irreversible thermodynamics | entropy | entropy | Onsager's symmetry principle | Onsager's symmetry principle | diffusion | diffusion | capillarity | capillarity | stress | stress | diffusion equation | diffusion equation | crystal | crystal | jump process | jump process | jump rate | jump rate | diffusivity | diffusivity | interstitial | interstitial | Kroger-Vink | Kroger-Vink | grain boundary | grain boundary | isotropic | isotropic | Rayleigh instability | Rayleigh instability | Gibbs-Thomson | Gibbs-Thomson | particle coarsening | particle coarsening | growth kinetics | growth kinetics | phase transformation | phase transformation | nucleation | nucleation | spinoldal decomposition | spinoldal decompositionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.01 Single Variable Calculus (MIT) 18.01 Single Variable Calculus (MIT)

Description

Includes audio/video content: AV lectures. This introductory calculus course covers differentiation and integration of functions of one variable, with applications. Includes audio/video content: AV lectures. This introductory calculus course covers differentiation and integration of functions of one variable, with applications.Subjects

differentiation and integration of functions of one variable | differentiation and integration of functions of one variable | limits | limits | continuity | continuity | differentiation rules | differentiation rules | extremum problems | extremum problems | definite and indefinite integration | definite and indefinite integration | fundamental theorem of calculus | fundamental theorem of calculus | elementary | elementary | techniques of integration | techniques of integration | approximation of definite integrals | approximation of definite integrals | improper integrals | improper integrals | l'H?pital's rule | l'H?pital's ruleLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This advanced video class serves goes into greater depth on the topics covered in 4.351 , Introduction to Video. It also will explore the nature and function of narrative in cinema and video through exercises and screenings culminating in a final project. Starting with a brief introduction to the basic principles of classical narrative cinema, we will proceed to explore strategies designed to test the elements of narrative: story trajectory, character development, verisimilitude, time-space continuity, viewer identification, suspension of disbelief, and closure. This advanced video class serves goes into greater depth on the topics covered in 4.351 , Introduction to Video. It also will explore the nature and function of narrative in cinema and video through exercises and screenings culminating in a final project. Starting with a brief introduction to the basic principles of classical narrative cinema, we will proceed to explore strategies designed to test the elements of narrative: story trajectory, character development, verisimilitude, time-space continuity, viewer identification, suspension of disbelief, and closure.Subjects

movies | movies | filmmaking | filmmaking | digital video | digital video | storytelling | storytelling | modern art | modern art | media | media | computerized editing | computerized editing | personal story | personal story | emotional art | emotional art | Fluxus | Fluxus | Bill Viola | Bill Viola | digital representation | digital representation | story trajectory | story trajectory | character development | character development | verisimilitude | verisimilitude | time-space continuity | time-space continuity | viewer identification | viewer identification | suspension of disbelief | suspension of disbelief | closure | closure | narrative cinema | narrative cinema | speculative biography | speculative biography | conceptual video | conceptual video | the fake | the fake | the remake | the remake | domestic ethnography | domestic ethnographyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawingsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.01 Single Variable Calculus (MIT) 18.01 Single Variable Calculus (MIT)

Description

This introductory calculus course covers differentiation and integration of functions of one variable, with applications. This introductory calculus course covers differentiation and integration of functions of one variable, with applications.Subjects

differentiation and integration of functions of one variable | differentiation and integration of functions of one variable | limits | limits | continuity | continuity | differentiation rules | differentiation rules | extremum problems | extremum problems | definite and indefinite integration | definite and indefinite integration | fundamental theorem of calculus | fundamental theorem of calculus | elementary | elementary | techniques of integration | techniques of integration | approximation of definite integrals | approximation of definite integrals | improper integrals | improper integrals | l'H?pital's rule | l'H?pital's ruleLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.100B Analysis I (MIT) 18.100B Analysis I (MIT)

Description

Analysis I covers fundamentals of mathematical analysis: convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, interchange of limit operations. MIT students may choose to take one of the two versions of 18.100. Option A chooses less abstract definitions and proofs, and gives applications where possible. Option B is more demanding and for students with more mathematical maturity; it places more emphasis on point-set topology and n-space, whereas Option A is concerned primarily with the real line. Analysis I covers fundamentals of mathematical analysis: convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, interchange of limit operations. MIT students may choose to take one of the two versions of 18.100. Option A chooses less abstract definitions and proofs, and gives applications where possible. Option B is more demanding and for students with more mathematical maturity; it places more emphasis on point-set topology and n-space, whereas Option A is concerned primarily with the real line.Subjects

mathematical analysis | mathematical analysis | convergence of sequences | convergence of sequences | convergence of series | convergence of series | continuity | continuity | differentiability | differentiability | Reimann integral | Reimann integral | sequences and series of functions | sequences and series of functions | uniformity | uniformity | interchange of limit operations | interchange of limit operations | utility of abstract concepts | utility of abstract concepts | construction of proofs | construction of proofs | point-set topology | point-set topology | n-space | n-space | sequences of functions | sequences of functions | series of functions | series of functions | applications | applications | real variable | real variable | metric space | metric space | sets | sets | theorems | theorems | differentiate | differentiate | differentiable | differentiable | converge | converge | uniform | uniform | 18.100 | 18.100License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.100C Analysis I (MIT) 18.100C Analysis I (MIT)

Description

This course is meant as a first introduction to rigorous mathematics; understanding and writing of proofs will be emphasized. We will cover basic notions in real analysis: point-set topology, metric spaces, sequences and series, continuity, differentiability, and integration. This course is meant as a first introduction to rigorous mathematics; understanding and writing of proofs will be emphasized. We will cover basic notions in real analysis: point-set topology, metric spaces, sequences and series, continuity, differentiability, and integration.Subjects

analysis | analysis | sequences | sequences | series | series | continuity | continuity | differentiability | differentiability | Riemann | Riemann | uniformity | uniformity | limit operations | limit operations | proofs | proofs | point-set topology | point-set topology | n-space | n-space | communication | communication | writing | writingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls filesSubjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.100A Analysis I (MIT) 18.100A Analysis I (MIT)

Description

Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the plaSubjects

mathematical analysis | mathematical analysis | convergence of sequences | convergence of sequences | convergence of series | convergence of series | continuity | continuity | differentiability | differentiability | Riemann integral | Riemann integral | sequences and series of functions | sequences and series of functions | uniformity | uniformity | interchange of limit operations | interchange of limit operations | utility of abstract concepts | utility of abstract concepts | construction of proofs | construction of proofs | point-set topology | point-set topology | n-space | n-spaceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.01 Single Variable Calculus (MIT) 18.01 Single Variable Calculus (MIT)

Description

This introductory Calculus course covers differentiation and integration of functions of one variable, with applications. Topics include:Concepts of function, limits, and continuityDifferentiation rules, application to graphing, rates, approximations, and extremum problemsDefinite and indefinite integrationFundamental theorem of calculusApplications of integration to geometry and scienceElementary functionsTechniques of integrationApproximation of definite integrals, improper integrals, and L'Hôpital's rule MATLAB® is a trademark of The MathWorks, Inc. This introductory Calculus course covers differentiation and integration of functions of one variable, with applications. Topics include:Concepts of function, limits, and continuityDifferentiation rules, application to graphing, rates, approximations, and extremum problemsDefinite and indefinite integrationFundamental theorem of calculusApplications of integration to geometry and scienceElementary functionsTechniques of integrationApproximation of definite integrals, improper integrals, and L'Hôpital's rule MATLAB® is a trademark of The MathWorks, Inc.Subjects

differentiation and integration of functions of one variable | differentiation and integration of functions of one variable | limits | limits | continuity | continuity | differentiation rules | differentiation rules | extremum problems | extremum problems | definite and indefinite integration | definite and indefinite integration | fundamental theorem of calculus | fundamental theorem of calculus | elementary | elementary | techniques of integration | techniques of integration | approximation of definite integrals | approximation of definite integrals | improper integrals | improper integrals | l'H?pital's rule | l'H?pital's rule | single variable calculus | single variable calculus | mathematical applications | mathematical applications | function | function | graphing | graphing | rates | rates | approximations | approximations | definite integration | definite integration | indefinite integration | indefinite integration | geometry | geometry | science | science | elementary functions | elementary functions | definite integrals | definite integralsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.100B Analysis I (MIT) 18.100B Analysis I (MIT)

Description

Analysis I covers fundamentals of mathematical analysis: convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, and interchange of limit operations. Analysis I covers fundamentals of mathematical analysis: convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, and interchange of limit operations.Subjects

mathematical analysis | mathematical analysis | convergence of sequences | convergence of sequences | convergence of series | convergence of series | continuity | continuity | differentiability | differentiability | Riemann integral | Riemann integral | sequences and series of functions | sequences and series of functions | uniformity | uniformity | interchange of limit operations | interchange of limit operations | utility of abstract concepts | utility of abstract concepts | construction of proofs | construction of proofs | point-set topology | point-set topology | n-space | n-spaceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.243J Dynamics of Nonlinear Systems (MIT) 6.243J Dynamics of Nonlinear Systems (MIT)

Description

This course provides an introduction to nonlinear deterministic dynamical systems. Topics covered include: nonlinear ordinary differential equations; planar autonomous systems; fundamental theory: Picard iteration, contraction mapping theorem, and Bellman-Gronwall lemma; stability of equilibria by Lyapunov's first and second methods; feedback linearization; and application to nonlinear circuits and control systems. This course provides an introduction to nonlinear deterministic dynamical systems. Topics covered include: nonlinear ordinary differential equations; planar autonomous systems; fundamental theory: Picard iteration, contraction mapping theorem, and Bellman-Gronwall lemma; stability of equilibria by Lyapunov's first and second methods; feedback linearization; and application to nonlinear circuits and control systems.Subjects

nonlinear systems | nonlinear systems | deterministic dynamical systems | deterministic dynamical systems | ordinary differential equations | ordinary differential equations | planar autonomous systems | planar autonomous systems | Picard iteration | Picard iteration | contraction mapping theorem | contraction mapping theorem | Bellman-Gronwall lemma | Bellman-Gronwall lemma | Lyapunov methods | Lyapunov methods | feedback linearization | feedback linearization | nonlinear circuits | nonlinear circuits | control systems | control systems | local controllability | local controllability | volume evolution | volume evolution | system analysis | system analysis | singular perturbations | singular perturbations | averaging | averaging | local behavior | local behavior | trajectories | trajectories | equilibria | equilibria | storage functions | storage functions | stability analysis | stability analysis | continuity | continuity | differential equations | differential equations | system models | system models | parameters | parameters | input/output | input/output | state-space | state-space | 16.337 | 16.337License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.01SC Single Variable Calculus (MIT) 18.01SC Single Variable Calculus (MIT)

Description

Includes audio/video content: AV lectures. This calculus course covers differentiation and integration of functions of one variable, and concludes with a brief discussion of infinite series. Calculus is fundamental to many scientific disciplines including physics, engineering, and economics. Includes audio/video content: AV lectures. This calculus course covers differentiation and integration of functions of one variable, and concludes with a brief discussion of infinite series. Calculus is fundamental to many scientific disciplines including physics, engineering, and economics.Subjects

differentiation of functions | differentiation of functions | integration of functions | integration of functions | limits | limits | continuity | continuity | differentiation rules | differentiation rules | extremum problems | extremum problems | definite integration | definite integration | indefinite integration | indefinite integration | fundamental theorem of calculus | fundamental theorem of calculus | techniques of integration | techniques of integration | approximation of definite integrals | approximation of definite integrals | improper integrals | improper integrals | l'HÃ´pital's rule | l'HÃ´pital's ruleLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.01 Single Variable Calculus (MIT)

Description

This introductory Calculus course covers differentiation and integration of functions of one variable, with applications. Topics include:Concepts of function, limits, and continuityDifferentiation rules, application to graphing, rates, approximations, and extremum problemsDefinite and indefinite integrationFundamental theorem of calculusApplications of integration to geometry and scienceElementary functionsTechniques of integrationApproximation of definite integrals, improper integrals, and L'Hôpital's rule MATLAB® is a trademark of The MathWorks, Inc.Subjects

differentiation and integration of functions of one variable | limits | continuity | differentiation rules | extremum problems | definite and indefinite integration | fundamental theorem of calculus | elementary | techniques of integration | approximation of definite integrals | improper integrals | l'H?pital's rule | single variable calculus | mathematical applications | function | graphing | rates | approximations | definite integration | indefinite integration | geometry | science | elementary functions | definite integralsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Analysis I covers fundamentals of mathematical analysis: convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, and interchange of limit operations.Subjects

mathematical analysis | convergence of sequences | convergence of series | continuity | differentiability | Riemann integral | sequences and series of functions | uniformity | interchange of limit operations | utility of abstract concepts | construction of proofs | point-set topology | n-spaceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.100A Introduction to Analysis (MIT)

Description

Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the plaSubjects

mathematical analysis | estimations | limit of a sequence | limit theorems | subsequences | cluster points | infinite series | power series | local and global properties | continuity | intermediate-value theorem | convexity | integrability | Riemann integral | calculus | convergence | Gamma function | Stirling | quantifiers and negation | Leibniz | Fubini | improper integrals | Lebesgue integral | mathematical proofs | differentiation | integrationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Analysis I covers fundamentals of mathematical analysis: metric spaces, convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, interchange of limit operations.Subjects

mathematical analysis | convergence of sequences | convergence of series | continuity | differentiability | Riemann integral | sequences and series of functions | uniformity | interchange of limit operations | utility of abstract concepts | construction of proofs | point-set topology | n-spaceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.243J Dynamics of Nonlinear Systems (MIT)

Description

This course provides an introduction to nonlinear deterministic dynamical systems. Topics covered include: nonlinear ordinary differential equations; planar autonomous systems; fundamental theory: Picard iteration, contraction mapping theorem, and Bellman-Gronwall lemma; stability of equilibria by Lyapunov's first and second methods; feedback linearization; and application to nonlinear circuits and control systems.Subjects

nonlinear systems | deterministic dynamical systems | ordinary differential equations | planar autonomous systems | Picard iteration | contraction mapping theorem | Bellman-Gronwall lemma | Lyapunov methods | feedback linearization | nonlinear circuits | control systems | local controllability | volume evolution | system analysis | singular perturbations | averaging | local behavior | trajectories | equilibria | storage functions | stability analysis | continuity | differential equations | system models | parameters | input/output | state-space | 16.337License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.01SC Single Variable Calculus (MIT)

Description

This calculus course covers differentiation and integration of functions of one variable, and concludes with a brief discussion of infinite series. Calculus is fundamental to many scientific disciplines including physics, engineering, and economics.Subjects

differentiation of functions | integration of functions | limits | continuity | differentiation rules | extremum problems | definite integration | indefinite integration | fundamental theorem of calculus | techniques of integration | approximation of definite integrals | improper integrals | ôpital's ruleLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allocwscholarcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata3.21 Kinetic Processes in Materials (MIT)

Description

This course presents a unified treatment of phenomenological and atomistic kinetic processes in materials. It provides the foundation for the advanced understanding of processing, microstructural evolution, and behavior for a broad spectrum of materials. The course emphasizes analysis and development of rigorous comprehension of fundamentals. Topics include: irreversible thermodynamics; diffusion; nucleation; phase transformations; fluid and heat transport; morphological instabilities; gas-solid, liquid-solid, and solid-solid reactions.Subjects

Thermodynamics | field | gradient | continuity equation | irreversible thermodynamics | entropy | Onsager's symmetry principle | diffusion | capillarity | stress | diffusion equation | crystal | jump process | jump rate | diffusivity | interstitial | Kroger-Vink | grain boundary | isotropic | Rayleigh instability | Gibbs-Thomson | particle coarsening | growth kinetics | phase transformation | nucleation | spinoldal decompositionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata4.366 Advanced Projects in the Visual Arts: Personal Narrative (MIT)

Description

This advanced video class serves goes into greater depth on the topics covered in 4.351 , Introduction to Video. It also will explore the nature and function of narrative in cinema and video through exercises and screenings culminating in a final project. Starting with a brief introduction to the basic principles of classical narrative cinema, we will proceed to explore strategies designed to test the elements of narrative: story trajectory, character development, verisimilitude, time-space continuity, viewer identification, suspension of disbelief, and closure.Subjects

movies | filmmaking | digital video | storytelling | modern art | media | computerized editing | personal story | emotional art | Fluxus | Bill Viola | digital representation | story trajectory | character development | verisimilitude | time-space continuity | viewer identification | suspension of disbelief | closure | narrative cinema | speculative biography | conceptual video | the fake | the remake | domestic ethnographyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata