Searching for convection : 45 results found | RSS Feed for this search

2.51 Intermediate Heat and Mass Transfer (MIT) 2.51 Intermediate Heat and Mass Transfer (MIT)

Description

2.51 is a 12-unit subject, serving as the Mechanical Engineering Department's advanced undergraduate course in heat and mass transfer. The prerequisites for this course are the undergraduate courses in thermodynamics and fluid mechanics, specifically Thermal Fluids Engineering I and Thermal Fluids Engineering II or their equivalents. This course covers problems of heat and mass transfer in greater depth and complexity than is done in those courses and incorporates many subjects that are not included or are treated lightly in those courses; analysis is given greater emphasis than the use of correlations. Course 2.51 is directed at undergraduates having a strong interest in thermal science and graduate students who have not previously studied heat transfer. 2.51 is a 12-unit subject, serving as the Mechanical Engineering Department's advanced undergraduate course in heat and mass transfer. The prerequisites for this course are the undergraduate courses in thermodynamics and fluid mechanics, specifically Thermal Fluids Engineering I and Thermal Fluids Engineering II or their equivalents. This course covers problems of heat and mass transfer in greater depth and complexity than is done in those courses and incorporates many subjects that are not included or are treated lightly in those courses; analysis is given greater emphasis than the use of correlations. Course 2.51 is directed at undergraduates having a strong interest in thermal science and graduate students who have not previously studied heat transfer.Subjects

heat transfer | heat transfer | mass transfer | mass transfer | Unsteady heat conduction | Unsteady heat conduction | evaporation | evaporation | solar radiation | solar radiation | spectral radiation | spectral radiation | grey radiation networks | grey radiation networks | black bodies | black bodies | thermal radiation | thermal radiation | external configurations | external configurations | natural convection | natural convection | forced convection | forced convection | steady conduction in multidimensional configurations | steady conduction in multidimensional configurationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.51 Intermediate Heat and Mass Transfer (MIT) 2.51 Intermediate Heat and Mass Transfer (MIT)

Description

2.51 is a 12-unit subject, serving as the Mechanical Engineering Department's advanced undergraduate course in heat and mass transfer. The prerequisites for this course are the undergraduate courses in thermodynamics and fluid mechanics, specifically Thermal Fluids Engineering I and Thermal Fluids Engineering II or their equivalents. This course covers problems of heat and mass transfer in greater depth and complexity than is done in those courses and incorporates many subjects that are not included or are treated lightly in those courses; analysis is given greater emphasis than the use of correlations. Course 2.51 is directed at undergraduates having a strong interest in thermal science and graduate students who have not previously studied heat transfer. 2.51 is a 12-unit subject, serving as the Mechanical Engineering Department's advanced undergraduate course in heat and mass transfer. The prerequisites for this course are the undergraduate courses in thermodynamics and fluid mechanics, specifically Thermal Fluids Engineering I and Thermal Fluids Engineering II or their equivalents. This course covers problems of heat and mass transfer in greater depth and complexity than is done in those courses and incorporates many subjects that are not included or are treated lightly in those courses; analysis is given greater emphasis than the use of correlations. Course 2.51 is directed at undergraduates having a strong interest in thermal science and graduate students who have not previously studied heat transfer.Subjects

heat transfer | heat transfer | mass transfer | mass transfer | Unsteady heat conduction | Unsteady heat conduction | evaporation | evaporation | solar radiation | solar radiation | spectral radiation | spectral radiation | grey radiation networks | grey radiation networks | black bodies | black bodies | thermal radiation | thermal radiation | external configurations | external configurations | natural convection | natural convection | forced convection | forced convection | steady conduction in multidimensional configurations | steady conduction in multidimensional configurationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course presents finite element theory and methods for general linear and nonlinear analyses. Reliable and effective finite element procedures are discussed with their applications to the solution of general problems in solid, structural, and fluid mechanics, heat and mass transfer, and fluid-structure interactions. The governing continuum mechanics equations, conservation laws, virtual work, and variational principles are used to establish effective finite element discretizations and the stability, accuracy, and convergence are discussed. The homework and the student-selected term project using the general-purpose finite element analysis program ADINA are important parts of the course. This course presents finite element theory and methods for general linear and nonlinear analyses. Reliable and effective finite element procedures are discussed with their applications to the solution of general problems in solid, structural, and fluid mechanics, heat and mass transfer, and fluid-structure interactions. The governing continuum mechanics equations, conservation laws, virtual work, and variational principles are used to establish effective finite element discretizations and the stability, accuracy, and convergence are discussed. The homework and the student-selected term project using the general-purpose finite element analysis program ADINA are important parts of the course.Subjects

linear static analysis | linear static analysis | solids | solids | structures | structures | nonlinear static analysis | nonlinear static analysis | heat transfer | heat transfer | fluid flows | fluid flows | finite element methods | finite element methods | ADINA | ADINA | student work | student work | beams | beams | plates | plates | shells | shells | displacement | displacement | conduction | conduction | convection | convection | radiation | radiation | Navier-Stokes | Navier-Stokes | incompressible fluids | incompressible fluids | acoustic fluids | acoustic fluidsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.820 Turbulence in Geophysical Systems (MIT) 12.820 Turbulence in Geophysical Systems (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.Subjects

phenomena | theory | and modeling of turbulence | phenomena | theory | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.820 Turbulence in Geophysical Systems (MIT) 12.820 Turbulence in Geophysical Systems (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.Subjects

phenomena | theory | and modeling of turbulence | phenomena | theory | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the following topics: conduction, diffusion, convection in electrolytes; fields in heterogeneous media; electrical double layers; Maxwell stress tensor and electrical forces in physiological systems; and fluid and solid continua: equations of motion useful for porous, hydrated biological tissues. Case studies considered include membrane transport; electrode interfaces; electrical, mechanical, and chemical transduction in tissues; electrophoretic and electroosmotic flows; diffusion/reaction; and ECG. The course also examines electromechanical and physicochemical interactions in biomaterials and cells; orthopaedic, cardiovascular, and other clinical examples. This course covers the following topics: conduction, diffusion, convection in electrolytes; fields in heterogeneous media; electrical double layers; Maxwell stress tensor and electrical forces in physiological systems; and fluid and solid continua: equations of motion useful for porous, hydrated biological tissues. Case studies considered include membrane transport; electrode interfaces; electrical, mechanical, and chemical transduction in tissues; electrophoretic and electroosmotic flows; diffusion/reaction; and ECG. The course also examines electromechanical and physicochemical interactions in biomaterials and cells; orthopaedic, cardiovascular, and other clinical examples.Subjects

biomaterials | biomaterials | conduction | conduction | diffusion | diffusion | convection in electrolytes | convection in electrolytes | fields in heterogeneous media | fields in heterogeneous media | electrical double layers | electrical double layers | Maxwell stress tensor | Maxwell stress tensor | fluid and solid continua | fluid and solid continua | biological tissues | biological tissues | membrane transport | membrane transport | electrode | electrode | transduction | transduction | electrophoretic flow | electrophoretic flow | electroosmotic flow | electroosmotic flow | diffusion reaction | diffusion reaction | ECG | ECG | orthopaedic | cardiovascular | orthopaedic | cardiovascular | 2.795J | 2.795J | 2.795 | 2.795 | 6.561J | 6.561J | 6.561 | 6.561 | 10.539J | 10.539J | 10.539 | 10.539 | HST.544J | HST.544J | HST.544 | HST.544License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.820 Turbulence in Geophysical Systems (MIT) 12.820 Turbulence in Geophysical Systems (MIT)

Description

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.Subjects

Phenomena | theory | and modeling of turbulence | Phenomena | theory | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal waves | turbulence flows | turbulence flows | earth | earth | energetics | energetics | isotropic homogeneous 2D turbulence | isotropic homogeneous 2D turbulence | isotropic homogeneous 3d flows | isotropic homogeneous 3d flows | quasi-geostrophic turbulence | quasi-geostrophic turbulence | parameterizing turbulence | parameterizing turbulence | wave dynamics | wave dynamics | turbulent dispersion | turbulent dispersion | coherent structures | coherent structuresLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Designed to familiarize students with theories and analytical tools useful for studying research literature, this course is a survey of fluid mechanical problems in the water environment. Because of the inherent nonlinearities in the governing equations, we shall emphasize the art of making analytical approximations not only for facilitating calculations but also for gaining deeper physical insight. The importance of scales will be discussed throughout the course in lectures and homeworks. Mathematical techniques beyond the usual preparation of first-year graduate students will be introduced as a part of the course. Topics vary from year to year. Designed to familiarize students with theories and analytical tools useful for studying research literature, this course is a survey of fluid mechanical problems in the water environment. Because of the inherent nonlinearities in the governing equations, we shall emphasize the art of making analytical approximations not only for facilitating calculations but also for gaining deeper physical insight. The importance of scales will be discussed throughout the course in lectures and homeworks. Mathematical techniques beyond the usual preparation of first-year graduate students will be introduced as a part of the course. Topics vary from year to year.Subjects

fluid dynamics | fluid dynamics | fluid motion | fluid motion | Cartesian tensor convention | Cartesian tensor convention | scaling | scaling | approximations | approximations | slow flow | slow flow | Stokes flow | Stokes flow | Oseen | Oseen | spreading | spreading | gravity | gravity | stratified fluid | stratified fluid | boundary layer | boundary layer | high speed flow | high speed flow | jets | jets | thermal plume | thermal plume | pure fluids | pure fluids | porous media | porous media | similarity method of solution | similarity method of solution | shear | shear | stratification | stratification | Orr-Sommerfeld | Orr-Sommerfeld | capillary phenomena | capillary phenomena | bubbles | bubbles | drops | drops | Marangoni instability | Marangoni instability | contact lines | contact lines | geophysical fluid dynamics | geophysical fluid dynamics | coastal flows | coastal flows | wind-induced flows | wind-induced flows | coastal upwelling | coastal upwelling | transient boundary layer | transient boundary layer | buoyancy | buoyancy | convection porous media | convection porous media | dispersion | dispersion | hydrodynamic instability | hydrodynamic instability | Kelvin-Helmholtz instability | Kelvin-Helmholtz instabilityLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course presents finite element theory and methods for general linear and nonlinear analyses. Reliable and effective finite element procedures are discussed with their applications to the solution of general problems in solid, structural, and fluid mechanics, heat and mass transfer, and fluid-structure interactions. The governing continuum mechanics equations, conservation laws, virtual work, and variational principles are used to establish effective finite element discretizations and the stability, accuracy, and convergence are discussed. The homework and the student-selected term project using the general-purpose finite element analysis program ADINA are important parts of the course. This course presents finite element theory and methods for general linear and nonlinear analyses. Reliable and effective finite element procedures are discussed with their applications to the solution of general problems in solid, structural, and fluid mechanics, heat and mass transfer, and fluid-structure interactions. The governing continuum mechanics equations, conservation laws, virtual work, and variational principles are used to establish effective finite element discretizations and the stability, accuracy, and convergence are discussed. The homework and the student-selected term project using the general-purpose finite element analysis program ADINA are important parts of the course.Subjects

linear static analysis | linear static analysis | solids | solids | structures | structures | nonlinear static analysis | nonlinear static analysis | heat transfer | heat transfer | fluid flows | fluid flows | finite element methods | finite element methods | ADINA | ADINA | student work | student work | beams | beams | plates | plates | shells | shells | displacement | displacement | conduction | conduction | convection | convection | radiation | radiation | Navier-Stokes | Navier-Stokes | incompressible fluids | incompressible fluids | acoustic fluids | acoustic fluidsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata10.302 Transport Processes (MIT) 10.302 Transport Processes (MIT)

Description

Principles of heat and mass transfer. Steady and transient conduction and diffusion. Radiative heat transfer. Convective transport of heat and mass in both laminar and turbulent flows. Emphasis on the development of a physical understanding of the underlying phenomena and upon the ability to solve real heat and mass transfer problems of engineering significance. Principles of heat and mass transfer. Steady and transient conduction and diffusion. Radiative heat transfer. Convective transport of heat and mass in both laminar and turbulent flows. Emphasis on the development of a physical understanding of the underlying phenomena and upon the ability to solve real heat and mass transfer problems of engineering significance.Subjects

heat transfer | heat transfer | mass transfer | mass transfer | transport processes | transport processes | conservation of energy | conservation of energy | heat diffusion | heat diffusion | boundary and initial conditions | boundary and initial conditions | conduction | conduction | steady-state conduction | steady-state conduction | heat diffusion equation | heat diffusion equation | spatial effects | spatial effects | radiation | radiation | blackbody exchange | blackbody exchange | extended surfaces | extended surfaces | gray surfaces | gray surfaces | heat exchangers | heat exchangers | convection | convection | boundary layers | boundary layers | steady diffusion | steady diffusion | transient diffusion | transient diffusionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, boundary layer turbulence, internal waves, two dimensional turbulence, quasi-geostrophic turbulence, and macrotrubulence in the ocean and atmosphere. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, boundary layer turbulence, internal waves, two dimensional turbulence, quasi-geostrophic turbulence, and macrotrubulence in the ocean and atmosphere.Subjects

phenomena | theory | and modeling of turbulence | phenomena | theory | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, quasi-geostrophic turbulence, shallow water turbulence, baroclinic turbulence, macroturbulence in the ocean and atmosphere. This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, quasi-geostrophic turbulence, shallow water turbulence, baroclinic turbulence, macroturbulence in the ocean and atmosphere.Subjects

phenomena | phenomena | theory | theory | and modeling of turbulence | and modeling of turbulence | oceans | oceans | atmosphere | atmosphere | fine structure | fine structure | planetary scale motions | planetary scale motions | homogeneous flows | homogeneous flows | geostrophic motions | geostrophic motions | shear flows | shear flows | convection | convection | boundary layers | boundary layers | stably stratified flows | stably stratified flows | internal waves | internal wavesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The main objective of this cross-disciplinary course is to understand the historical development and the current status of ideas and models, to present and question the constraints from the different research fields, and to investigate if and how the different views on mantle flow can be reconciled with the currently available data. The main objective of this cross-disciplinary course is to understand the historical development and the current status of ideas and models, to present and question the constraints from the different research fields, and to investigate if and how the different views on mantle flow can be reconciled with the currently available data.Subjects

structure | composition | and evolution of Earth's deep interior | structure | composition | and evolution of Earth's deep interior | Seismic imaging | Seismic imaging | geodynamical modeling | geodynamical modeling | nobel gas analyses | nobel gas analyses | mantle convection | mantle convection | geophysics | geophysics | earth science | earth scienceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This cross-disciplinary course aims to understand the historical development and the current status of ideas and models, to present and question the constraints from the different research fields, and to investigate if and how the different views on mantle flow can be reconciled with the currently available data. This cross-disciplinary course aims to understand the historical development and the current status of ideas and models, to present and question the constraints from the different research fields, and to investigate if and how the different views on mantle flow can be reconciled with the currently available data.Subjects

mantle convection | mantle convection | geophysics | geophysics | geodynamics | geodynamics | mantle | mantle | earth | earth | geochemistry | geochemistry | seismology | seismology | stratification | stratification | geodynamical modeling | geodynamical modeling | tomography | tomography | seismic imaging | seismic imagingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.950 Atmospheric and Oceanic Modeling (MIT) 12.950 Atmospheric and Oceanic Modeling (MIT)

Description

The numerical methods, formulation and parameterizations used in models of the circulation of the atmosphere and ocean will be described in detail. Widely used numerical methods will be the focus but we will also review emerging concepts and new methods. The numerics underlying a hierarchy of models will be discussed, ranging from simple GFD models to the high-end GCMs. In the context of ocean GCMs, we will describe parameterization of geostrophic eddies, mixing and the surface and bottom boundary layers. In the atmosphere, we will review parameterizations of convection and large scale condensation, the planetary boundary layer and radiative transfer. The numerical methods, formulation and parameterizations used in models of the circulation of the atmosphere and ocean will be described in detail. Widely used numerical methods will be the focus but we will also review emerging concepts and new methods. The numerics underlying a hierarchy of models will be discussed, ranging from simple GFD models to the high-end GCMs. In the context of ocean GCMs, we will describe parameterization of geostrophic eddies, mixing and the surface and bottom boundary layers. In the atmosphere, we will review parameterizations of convection and large scale condensation, the planetary boundary layer and radiative transfer.Subjects

numerical methods | numerical methods | formulation | formulation | parameterizations | parameterizations | models of the circulation of the atmosphere and ocean | models of the circulation of the atmosphere and ocean | numerics underlying a hierarchy of models | numerics underlying a hierarchy of models | simple GFD models | simple GFD models | high-end GCMs | high-end GCMs | ocean GCMs | ocean GCMs | parameterization of geostrophic eddies | parameterization of geostrophic eddies | mixing | mixing | surface and bottom boundary layers | surface and bottom boundary layers | atmosphere | atmosphere | parameterizations of convection | parameterizations of convection | large scale condensation | large scale condensation | planetary boundary layer | planetary boundary layer | radiative transfer | radiative transfer | finite difference method | finite difference method | Spatial discretization | Spatial discretization | numerical dispersion | numerical dispersion | Series expansion | Series expansion | Time-stepping | Time-stepping | Space-time discretization | Space-time discretization | Shallow water dynamics | Shallow water dynamics | Barotropic models | Barotropic models | Quasi-geostrophic equations | Quasi-geostrophic equations | Quasi-geostrophic models | Quasi-geostrophic models | Eddy parameterization | Eddy parameterization | Vertical coordinates | Vertical coordinates | primitive equations | primitive equations | Boundary layer parameterizations | Boundary layer parameterizationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.13 Aerodynamics of Viscous Fluids (MIT) 16.13 Aerodynamics of Viscous Fluids (MIT)

Description

The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included. The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.Subjects

aerodynamics | aerodynamics | viscous fluids | viscous fluids | viscosity | viscosity | fundamental theorem of kinematics | fundamental theorem of kinematics | convection | convection | vorticity | vorticity | strain | strain | Eulerian description | Eulerian description | Lagrangian description | Lagrangian description | conservation of mass | conservation of mass | continuity | continuity | conservation of momentum | conservation of momentum | stress tensor | stress tensor | newtonian fluid | newtonian fluid | circulation | circulation | Navier-Stokes | Navier-Stokes | similarity | similarity | dimensional analysis | dimensional analysis | thin shear later approximation | thin shear later approximation | TSL coordinates | TSL coordinates | boundary conditions | boundary conditions | shear later categories | shear later categories | local scaling | local scaling | Falkner-Skan flows | Falkner-Skan flows | solution techniques | solution techniques | finite difference methods | finite difference methods | Newton-Raphson | Newton-Raphson | integral momentum equation | integral momentum equation | Thwaites method | Thwaites method | integral kinetic energy equation | integral kinetic energy equation | dissipation | dissipation | asymptotic perturbation | asymptotic perturbation | displacement body | displacement body | transpiration | transpiration | form drag | form drag | stall | stall | interacting boundary layer theory | interacting boundary layer theory | stability | stability | transition | transition | small-perturbation | small-perturbation | Orr-Somemerfeld | Orr-Somemerfeld | temporal amplification | temporal amplification | spatial amplification | spatial amplification | Reynolds | Reynolds | Prandtl | Prandtl | turbulent boundary layer | turbulent boundary layer | wake | wake | wall layers | wall layers | inner variables | inner variables | outer variables | outer variables | roughness | roughness | Clauser | Clauser | Dissipation formula | Dissipation formula | integral closer | integral closer | turbulence modeling | turbulence modeling | transport models | transport models | turbulent shear layers | turbulent shear layers | compressible then shear layers | compressible then shear layers | compressibility | compressibility | temperature profile | temperature profile | heat flux | heat flux | 3D boundary layers | 3D boundary layers | crossflow | crossflow | lateral dilation | lateral dilation | 3D separation | 3D separation | constant-crossflow | constant-crossflow | 3D transition | 3D transition | compressible thin shear layers | compressible thin shear layersLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This graduate-level course is an advanced introduction to applications and theory of numerical methods for solution of differential equations. In particular, the course focuses on physically-arising partial differential equations, with emphasis on the fundamental ideas underlying various methods. This graduate-level course is an advanced introduction to applications and theory of numerical methods for solution of differential equations. In particular, the course focuses on physically-arising partial differential equations, with emphasis on the fundamental ideas underlying various methods.Subjects

advection equation | advection equation | heat equation | heat equation | wave equation | wave equation | Airy equation | Airy equation | convection-diffusion problems | convection-diffusion problems | KdV equation | KdV equation | hyperbolic conservation laws | hyperbolic conservation laws | Poisson equation | Poisson equation | Stokes problem | Stokes problem | Navier-Stokes equations | Navier-Stokes equations | interface problems | interface problems | consistency | consistency | stability | stability | convergence | convergence | Lax equivalence theorem | Lax equivalence theorem | error analysis | error analysis | Fourier approaches | Fourier approaches | staggered grids | staggered grids | shocks | shocks | front propagation | front propagation | preconditioning | preconditioning | multigrid | multigrid | Krylov spaces | Krylov spaces | saddle point problems | saddle point problems | finite differences | finite differences | finite volumes | finite volumes | finite elements | finite elements | ENO/WENO | ENO/WENO | spectral methods | spectral methods | projection approaches for incompressible ows | projection approaches for incompressible ows | level set methods | level set methods | particle methods | particle methods | direct and iterative methods | direct and iterative methodsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the following topics: conduction, diffusion, convection in electrolytes; fields in heterogeneous media; electrical double layers; Maxwell stress tensor and electrical forces in physiological systems; and fluid and solid continua: equations of motion useful for porous, hydrated biological tissues. Case studies considered include membrane transport; electrode interfaces; electrical, mechanical, and chemical transduction in tissues; electrophoretic and electroosmotic flows; diffusion/reaction; and ECG. The course also examines electromechanical and physicochemical interactions in biomaterials and cells; orthopaedic, cardiovascular, and other clinical examples. This course covers the following topics: conduction, diffusion, convection in electrolytes; fields in heterogeneous media; electrical double layers; Maxwell stress tensor and electrical forces in physiological systems; and fluid and solid continua: equations of motion useful for porous, hydrated biological tissues. Case studies considered include membrane transport; electrode interfaces; electrical, mechanical, and chemical transduction in tissues; electrophoretic and electroosmotic flows; diffusion/reaction; and ECG. The course also examines electromechanical and physicochemical interactions in biomaterials and cells; orthopaedic, cardiovascular, and other clinical examples.Subjects

biomaterials | biomaterials | conduction | conduction | diffusion | diffusion | convection in electrolytes | convection in electrolytes | fields in heterogeneous media | fields in heterogeneous media | electrical double layers | electrical double layers | Maxwell stress tensor | Maxwell stress tensor | fluid and solid continua | fluid and solid continua | biological tissues | biological tissues | membrane transport | membrane transport | electrode | electrode | transduction | transduction | electrophoretic flow | electrophoretic flow | electroosmotic flow | electroosmotic flow | diffusion reaction | diffusion reaction | ECG | ECG | orthopaedic | cardiovascular | orthopaedic | cardiovascular | 20.430 | 20.430 | 2.795 | 2.795 | 6.561 | 6.561 | 10.539 | 10.539 | HST.544 | HST.544License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata3.044 Materials Processing (MIT) 3.044 Materials Processing (MIT)

Description

The goal of 3.044 is to teach cost-effective and sustainable production of solid material with a desired geometry, structure or distribution of structures, and production volume. Toward this end, it is organized around different types of phase transformations which determine the structure in various processes for making materials, in roughly increasing order of entropy change during those transformations: solid heat treatment, liquid-solid processing, fluid behavior, deformation processing, and vapor-solid processing. The course ends with several lectures that place the subject in the context of society at large. The goal of 3.044 is to teach cost-effective and sustainable production of solid material with a desired geometry, structure or distribution of structures, and production volume. Toward this end, it is organized around different types of phase transformations which determine the structure in various processes for making materials, in roughly increasing order of entropy change during those transformations: solid heat treatment, liquid-solid processing, fluid behavior, deformation processing, and vapor-solid processing. The course ends with several lectures that place the subject in the context of society at large.Subjects

diffusion | diffusion | chemical reaction | chemical reaction | phase transformation | phase transformation | heat transport | heat transport | mass transport | mass transport | fluid | fluid | fluid flow | fluid flow | recycling | recycling | cost modeling | cost modeling | multilayer | multilayer | biot number | biot number | radiation | radiation | convection | convection | titanium | titanium | moving bodies | moving bodies | Reynolds number | Reynolds number | turbulence | turbulence | reactor | reactor | deformation | deformation | polymer | polymer | vapor transport | vapor transport | nanotechnology | nanotechnologyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the fundamental driving forces for transport—chemical gradients, electrical interactions, and fluid flow—as applied to the biology and biophysics of molecules, cells, and tissues. This course covers the fundamental driving forces for transport—chemical gradients, electrical interactions, and fluid flow—as applied to the biology and biophysics of molecules, cells, and tissues.Subjects

diffusion | diffusion | molecular diffusion | molecular diffusion | diffusion-reaction | diffusion-reaction | conduction | conduction | convection | convection | biological systems | biological systems | fields | fields | electrical double layers | electrical double layers | Maxwell stress tensor | Maxwell stress tensor | physiological systems | physiological systems | fluid | fluid | solid | solid | equations of motion | equations of motion | case study | case study | electrode interfaces | electrode interfaces | transduction | transduction | random walk | random walk | Stokes-Einstein | Stokes-Einstein | Fick's laws | Fick's laws | reaction | reaction | Damköhler number | Damköhler numberLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.51 Intermediate Heat and Mass Transfer (MIT)

Description

2.51 is a 12-unit subject, serving as the Mechanical Engineering Department's advanced undergraduate course in heat and mass transfer. The prerequisites for this course are the undergraduate courses in thermodynamics and fluid mechanics, specifically Thermal Fluids Engineering I and Thermal Fluids Engineering II or their equivalents. This course covers problems of heat and mass transfer in greater depth and complexity than is done in those courses and incorporates many subjects that are not included or are treated lightly in those courses; analysis is given greater emphasis than the use of correlations. Course 2.51 is directed at undergraduates having a strong interest in thermal science and graduate students who have not previously studied heat transfer.Subjects

heat transfer | mass transfer | Unsteady heat conduction | evaporation | solar radiation | spectral radiation | grey radiation networks | black bodies | thermal radiation | external configurations | natural convection | forced convection | steady conduction in multidimensional configurationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.51 Intermediate Heat and Mass Transfer (MIT)

Description

2.51 is a 12-unit subject, serving as the Mechanical Engineering Department's advanced undergraduate course in heat and mass transfer. The prerequisites for this course are the undergraduate courses in thermodynamics and fluid mechanics, specifically Thermal Fluids Engineering I and Thermal Fluids Engineering II or their equivalents. This course covers problems of heat and mass transfer in greater depth and complexity than is done in those courses and incorporates many subjects that are not included or are treated lightly in those courses; analysis is given greater emphasis than the use of correlations. Course 2.51 is directed at undergraduates having a strong interest in thermal science and graduate students who have not previously studied heat transfer.Subjects

heat transfer | mass transfer | Unsteady heat conduction | evaporation | solar radiation | spectral radiation | grey radiation networks | black bodies | thermal radiation | external configurations | natural convection | forced convection | steady conduction in multidimensional configurationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata3.044 Materials Processing (MIT)

Description

The goal of 3.044 is to teach cost-effective and sustainable production of solid material with a desired geometry, structure or distribution of structures, and production volume. Toward this end, it is organized around different types of phase transformations which determine the structure in various processes for making materials, in roughly increasing order of entropy change during those transformations: solid heat treatment, liquid-solid processing, fluid behavior, deformation processing, and vapor-solid processing. The course ends with several lectures that place the subject in the context of society at large.Subjects

diffusion | chemical reaction | phase transformation | heat transport | mass transport | fluid | fluid flow | recycling | cost modeling | multilayer | biot number | radiation | convection | titanium | moving bodies | Reynolds number | turbulence | reactor | deformation | polymer | vapor transport | nanotechnologyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.63 Advanced Fluid Dynamics of the Environment (MIT)

Description

Designed to familiarize students with theories and analytical tools useful for studying research literature, this course is a survey of fluid mechanical problems in the water environment. Because of the inherent nonlinearities in the governing equations, we shall emphasize the art of making analytical approximations not only for facilitating calculations but also for gaining deeper physical insight. The importance of scales will be discussed throughout the course in lectures and homeworks. Mathematical techniques beyond the usual preparation of first-year graduate students will be introduced as a part of the course. Topics vary from year to year.Subjects

fluid dynamics | fluid motion | Cartesian tensor convention | scaling | approximations | slow flow | Stokes flow | Oseen | spreading | gravity | stratified fluid | boundary layer | high speed flow | jets | thermal plume | pure fluids | porous media | similarity method of solution | shear | stratification | Orr-Sommerfeld | capillary phenomena | bubbles | drops | Marangoni instability | contact lines | geophysical fluid dynamics | coastal flows | wind-induced flows | coastal upwelling | transient boundary layer | buoyancy | convection porous media | dispersion | hydrodynamic instability | Kelvin-Helmholtz instabilityLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course examines the process of heat transfer, or the movement of thermal energy from one place to another as the result of a temperature difference. The student will thoroughly examine each type of heat transfer (conduction, convection, and radiation), as well as combinations of these modes. This free course may be completed online at any time. See course site for detailed overview and learning outcomes. (Mechanical Engineering 204)Subjects

heat transfer | thermodynamics | conduction | convection | radiation | diffusion | Engineering | H000License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata