Searching for convexity : 12 results found | RSS Feed for this search

Description

6.253 develops the core analytical issues of continuous optimization, duality, and saddle point theory, using a handful of unifying principles that can be easily visualized and readily understood. The mathematical theory of convex sets and functions is discussed in detail, and is the basis for an intuitive, highly visual, geometrical approach to the subject. 6.253 develops the core analytical issues of continuous optimization, duality, and saddle point theory, using a handful of unifying principles that can be easily visualized and readily understood. The mathematical theory of convex sets and functions is discussed in detail, and is the basis for an intuitive, highly visual, geometrical approach to the subject.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course will focus on fundamental subjects in convexity, duality, and convex optimization algorithms. The aim is to develop the core analytical and algorithmic issues of continuous optimization, duality, and saddle point theory using a handful of unifying principles that can be easily visualized and readily understood. This course will focus on fundamental subjects in convexity, duality, and convex optimization algorithms. The aim is to develop the core analytical and algorithmic issues of continuous optimization, duality, and saddle point theory using a handful of unifying principles that can be easily visualized and readily understood.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

6.253 develops the core analytical issues of continuous optimization, duality, and saddle point theory, using a handful of unifying principles that can be easily visualized and readily understood. The mathematical theory of convex sets and functions is discussed in detail, and is the basis for an intuitive, highly visual, geometrical approach to the subject.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This graduate level mathematics course covers decision theory, estimation, confidence intervals, and hypothesis testing. The course also introduces students to large sample theory. Other topics covered include asymptotic efficiency of estimates, exponential families, and sequential analysis. This graduate level mathematics course covers decision theory, estimation, confidence intervals, and hypothesis testing. The course also introduces students to large sample theory. Other topics covered include asymptotic efficiency of estimates, exponential families, and sequential analysis.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course will focus on fundamental subjects in (deterministic) optimization, connected through the themes of convexity, geometric multipliers, and duality. The aim is to develop the core analytical and computational issues of continuous optimization, duality, and saddle point theory using a handful of unifying principles that can be easily visualized and readily understood. The mathematical theory of convex sets and functions will be central, and will allow an intuitive, highly visual, geometrical approach to the subject. This theory will be developed in detail and in parallel with the optimization topics. The first part of the course develops the analytical issues of convexity and duality. The second part is devoted to convex optimization algorithms, and their applications to a variety This course will focus on fundamental subjects in (deterministic) optimization, connected through the themes of convexity, geometric multipliers, and duality. The aim is to develop the core analytical and computational issues of continuous optimization, duality, and saddle point theory using a handful of unifying principles that can be easily visualized and readily understood. The mathematical theory of convex sets and functions will be central, and will allow an intuitive, highly visual, geometrical approach to the subject. This theory will be developed in detail and in parallel with the optimization topics. The first part of the course develops the analytical issues of convexity and duality. The second part is devoted to convex optimization algorithms, and their applications to a variety

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This research-oriented course will focus on algebraic and computational techniques for optimization problems involving polynomial equations and inequalities with particular emphasis on the connections with semidefinite optimization. The course will develop in a parallel fashion several algebraic and numerical approaches to polynomial systems, with a view towards methods that simultaneously incorporate both elements. We will study both the complex and real cases, developing techniques of general applicability, and stressing convexity-based ideas, complexity results, and efficient implementations. Although we will use examples from several engineering areas, particular emphasis will be given to those arising from systems and control applications. This research-oriented course will focus on algebraic and computational techniques for optimization problems involving polynomial equations and inequalities with particular emphasis on the connections with semidefinite optimization. The course will develop in a parallel fashion several algebraic and numerical approaches to polynomial systems, with a view towards methods that simultaneously incorporate both elements. We will study both the complex and real cases, developing techniques of general applicability, and stressing convexity-based ideas, complexity results, and efficient implementations. Although we will use examples from several engineering areas, particular emphasis will be given to those arising from systems and control applications.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This graduate level mathematics course covers decision theory, estimation, confidence intervals, and hypothesis testing. The course also introduces students to large sample theory. Other topics covered include asymptotic efficiency of estimates, exponential families, and sequential analysis.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This research-oriented course will focus on algebraic and computational techniques for optimization problems involving polynomial equations and inequalities with particular emphasis on the connections with semidefinite optimization. The course will develop in a parallel fashion several algebraic and numerical approaches to polynomial systems, with a view towards methods that simultaneously incorporate both elements. We will study both the complex and real cases, developing techniques of general applicability, and stressing convexity-based ideas, complexity results, and efficient implementations. Although we will use examples from several engineering areas, particular emphasis will be given to those arising from systems and control applications.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course will focus on fundamental subjects in convexity, duality, and convex optimization algorithms. The aim is to develop the core analytical and algorithmic issues of continuous optimization, duality, and saddle point theory using a handful of unifying principles that can be easily visualized and readily understood.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course will focus on fundamental subjects in (deterministic) optimization, connected through the themes of convexity, geometric multipliers, and duality. The aim is to develop the core analytical and computational issues of continuous optimization, duality, and saddle point theory using a handful of unifying principles that can be easily visualized and readily understood. The mathematical theory of convex sets and functions will be central, and will allow an intuitive, highly visual, geometrical approach to the subject. This theory will be developed in detail and in parallel with the optimization topics. The first part of the course develops the analytical issues of convexity and duality. The second part is devoted to convex optimization algorithms, and their applications to a variety

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from