Searching for convolution : 48 results found | RSS Feed for this search

1 2

9.29J Introduction to Computational Neuroscience (MIT) 9.29J Introduction to Computational Neuroscience (MIT)

Description

Mathematical introduction to neural coding and dynamics. Convolution, correlation, linear systems, Fourier analysis, signal detection theory, probability theory, and information theory. Applications to neural coding, focusing on the visual system. Hodgkin-Huxley and related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission. Mathematical introduction to neural coding and dynamics. Convolution, correlation, linear systems, Fourier analysis, signal detection theory, probability theory, and information theory. Applications to neural coding, focusing on the visual system. Hodgkin-Huxley and related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission.

Subjects

neural coding | neural coding | dynamics | dynamics | convolution | convolution | correlation | correlation | linear systems | linear systems | Fourier analysis | Fourier analysis | signal detection theory | signal detection theory | probability theory | probability theory | information theory | information theory | neural excitability | neural excitability | stochastic models | stochastic models | ion channels | ion channels | cable theory | cable theory | 9.29 | 9.29 | 8.261 | 8.261

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.085 Computational Science and Engineering I (MIT) 18.085 Computational Science and Engineering I (MIT)

Description

Includes audio/video content: AV lectures, AV faculty introductions. This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: differential equations of equilibrium; Laplace's equation and potential flow; boundary-value problems; minimum principles and calculus of variations; Fourier series; discrete Fourier transform; convolution; and applications. Note: This course was previously called "Mathematical Methods for Engineers I." Includes audio/video content: AV lectures, AV faculty introductions. This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: differential equations of equilibrium; Laplace's equation and potential flow; boundary-value problems; minimum principles and calculus of variations; Fourier series; discrete Fourier transform; convolution; and applications. Note: This course was previously called "Mathematical Methods for Engineers I."

Subjects

linear algebra | linear algebra | networks | networks | Lagrange multipliers | Lagrange multipliers | differential equations of equilibrium | differential equations of equilibrium | Laplace's equation | Laplace's equation | potential flow | potential flow | boundary-value problems | boundary-value problems | Fourier series | Fourier series | discrete Fourier transform | discrete Fourier transform | convolution | convolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.085 Mathematical Methods for Engineers I (MIT) 18.085 Mathematical Methods for Engineers I (MIT)

Description

This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: differential equations of equilibrium; Laplace's equation and potential flow; boundary-value problems; minimum principles and calculus of variations; Fourier series; discrete Fourier transform; convolution; and applications. This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: differential equations of equilibrium; Laplace's equation and potential flow; boundary-value problems; minimum principles and calculus of variations; Fourier series; discrete Fourier transform; convolution; and applications.

Subjects

linear algebra | linear algebra | networks | networks | Lagrange multipliers | Lagrange multipliers | differential equations of equilibrium | differential equations of equilibrium | Laplace's equation | Laplace's equation | potential flow | potential flow | boundary-value problems | boundary-value problems | Fourier series | Fourier series | discrete Fourier transform | discrete Fourier transform | convolution | convolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.058 Principles of Medical Imaging (MIT) 22.058 Principles of Medical Imaging (MIT)

Description

An introduction to the principles of tomographic imaging and its applications. It includes a series of lectures with a parallel set of recitations that provide demonstrations of basic principles. Both ionizing and non-ionizing radiation are covered, including x-ray, PET, MRI, and ultrasound. Emphasis on the physics and engineering of image formation. An introduction to the principles of tomographic imaging and its applications. It includes a series of lectures with a parallel set of recitations that provide demonstrations of basic principles. Both ionizing and non-ionizing radiation are covered, including x-ray, PET, MRI, and ultrasound. Emphasis on the physics and engineering of image formation.

Subjects

general imaging principles | | general imaging principles | | linear optics | | linear optics | | ray tracing | | ray tracing | | Linear Imaging Systems | | Linear Imaging Systems | | Space Invariance | | Space Invariance | | Pin-hole camera | | Pin-hole camera | | Fourier Transformations | | Fourier Transformations | | Modulation Transfer Functions | | Modulation Transfer Functions | | Fourier convolution | | Fourier convolution | | Sampling | | Sampling | | Nyquist | | Nyquist | | counting statistics | | counting statistics | | additive noise | | additive noise | | optical imaging | | optical imaging | | Radiation types | | Radiation types | | Radiation detection | | Radiation detection | | photon detection | | photon detection | | spectra | | spectra | | attenuation | | attenuation | | Planar X-ray imaging | | Planar X-ray imaging | | Projective Imaging | | Projective Imaging | | X-ray CT | | X-ray CT | | Ultrasound | | Ultrasound | | microscopy | k-space | | microscopy | k-space | | NMR pulses | | NMR pulses | | f2-D gradient | | f2-D gradient | | spin echoes | | spin echoes | | 3-D methods of MRI | | 3-D methods of MRI | | volume localized spectroscopy | volume localized spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.003 Signals and Systems (MIT) 6.003 Signals and Systems (MIT)

Description

This course covers fundamentals of signal and system analysis, with applications drawn from filtering, audio and image processing, communications, and automatic control. Topics include convolution, Fourier series and transforms, sampling and discrete-time processing of continuous-time signals, modulation, Laplace and Z-transforms, and feedback systems. This course covers fundamentals of signal and system analysis, with applications drawn from filtering, audio and image processing, communications, and automatic control. Topics include convolution, Fourier series and transforms, sampling and discrete-time processing of continuous-time signals, modulation, Laplace and Z-transforms, and feedback systems.

Subjects

signal and system analysis | signal and system analysis | filtering | filtering | audio | audio | audio processing | audio processing | image processing | image processing | communications | communications | automatic control | automatic control | convolution | convolution | Fourier series | Fourier series | fourier transforms | fourier transforms | sampling | sampling | discrete-time processing | discrete-time processing | modulation | modulation | Laplace transforms | Laplace transforms | Z-transforms | Z-transforms | feedback systems | feedback systems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.309 Biological Engineering II: Instrumentation and Measurement (MIT) 20.309 Biological Engineering II: Instrumentation and Measurement (MIT)

Description

Includes audio/video content: AV special element video. This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data. Enrollment preference is given to juniors and seniors. Includes audio/video content: AV special element video. This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data. Enrollment preference is given to juniors and seniors.

Subjects

DNA analysis | DNA analysis | Fourier analysis | Fourier analysis | FFT | FFT | DNA melting | DNA melting | electronics | electronics | microscopy | microscopy | microscope | microscope | probes | probes | biology | biology | atomic force microscope | atomic force microscope | AFM | AFM | scanning probe microscope | scanning probe microscope | image processing | image processing | MATLAB | MATLAB | convolution | convolution | optoelectronics | optoelectronics | rheology | rheology | fluorescence | fluorescence | noise | noise | detector | detector | optics | optics | diffraction | diffraction | optical trap | optical trap | 3D | 3D | 3-D | 3-D | three-dimensional imaging | three-dimensional imaging | visualization | visualization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.085 Mathematical Methods for Engineers I (MIT) 18.085 Mathematical Methods for Engineers I (MIT)

Description

Review of linear algebra, applications to networks, structures, and estimation, Lagrange multipliers, differential equations of equilibrium, Laplace's equation and potential flow, boundary-value problems, minimum principles and calculus of variations, Fourier series, discrete Fourier transform, convolution, applications.Technical RequirementsRealOne Player software is required to run the .rm files found on this course site. MATLAB® is a trademark of The MathWorks, Inc. Review of linear algebra, applications to networks, structures, and estimation, Lagrange multipliers, differential equations of equilibrium, Laplace's equation and potential flow, boundary-value problems, minimum principles and calculus of variations, Fourier series, discrete Fourier transform, convolution, applications.Technical RequirementsRealOne Player software is required to run the .rm files found on this course site. MATLAB® is a trademark of The MathWorks, Inc.

Subjects

linear algebra | linear algebra | networks | networks | Lagrange multipliers | Lagrange multipliers | differential equations of equilibrium | differential equations of equilibrium | Laplace's equation | Laplace's equation | potential flow | potential flow | boundary-value problems | boundary-value problems | Fourier series | Fourier series | discrete Fourier transform | discrete Fourier transform | convolution | convolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.451 Principles of Digital Communication II (MIT) 6.451 Principles of Digital Communication II (MIT)

Description

Includes audio/video content: AV lectures. This course is the second of a two-term sequence with 6.450. The focus is on coding techniques for approaching the Shannon limit of additive white Gaussian noise (AWGN) channels, their performance analysis, and design principles. After a review of 6.450 and the Shannon limit for AWGN channels, the course begins by discussing small signal constellations, performance analysis and coding gain, and hard-decision and soft-decision decoding. It continues with binary linear block codes, Reed-Muller codes, finite fields, Reed-Solomon and BCH codes, binary linear convolutional codes, and the Viterbi algorithm. More advanced topics include trellis representations of binary linear block codes and trellis-based decoding; codes on graphs; the sum-product and Includes audio/video content: AV lectures. This course is the second of a two-term sequence with 6.450. The focus is on coding techniques for approaching the Shannon limit of additive white Gaussian noise (AWGN) channels, their performance analysis, and design principles. After a review of 6.450 and the Shannon limit for AWGN channels, the course begins by discussing small signal constellations, performance analysis and coding gain, and hard-decision and soft-decision decoding. It continues with binary linear block codes, Reed-Muller codes, finite fields, Reed-Solomon and BCH codes, binary linear convolutional codes, and the Viterbi algorithm. More advanced topics include trellis representations of binary linear block codes and trellis-based decoding; codes on graphs; the sum-product and

Subjects

coding techniques | coding techniques | the Shannon limit of additive white Gaussian noise channels | the Shannon limit of additive white Gaussian noise channels | performance analysis | performance analysis | Small signal constellations | Small signal constellations | coding gain | coding gain | Hard-decision and soft-decision decoding | Hard-decision and soft-decision decoding | Introduction to binary linear block codes | Introduction to binary linear block codes | Reed-Muller codes | Reed-Muller codes | finite fields | finite fields | Reed-Solomon and BCH codes | Reed-Solomon and BCH codes | binary linear convolutional codes | binary linear convolutional codes | Viterbi and BCJR algorithms | Viterbi and BCJR algorithms | Trellis representations of binary linear block codes | Trellis representations of binary linear block codes | trellis-based ML decoding | trellis-based ML decoding | Codes on graphs | Codes on graphs | sum-product | sum-product | max-product | max-product | decoding algorithms | decoding algorithms | Turbo codes | Turbo codes | LDPC codes and RA codes | LDPC codes and RA codes | Coding for the bandwidth-limited regime | Coding for the bandwidth-limited regime | Lattice codes. | Lattice codes. | Trellis-coded modulation | Trellis-coded modulation | Multilevel coding | Multilevel coding | Shaping | Shaping | Lattice codes | Lattice codes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.125 Measure and Integration (MIT) 18.125 Measure and Integration (MIT)

Description

This graduate-level course covers Lebesgue's integration theory with applications to analysis, including an introduction to convolution and the Fourier transform. This graduate-level course covers Lebesgue's integration theory with applications to analysis, including an introduction to convolution and the Fourier transform.

Subjects

Lebesgue integral | Lebesgue integral | convergence theorems | convergence theorems | Lebesgue measure in Rn | Lebesgue measure in Rn | Lpspaces | Lpspaces | Radon-Nikodym Theorem | Radon-Nikodym Theorem | Lebesgue Differentiation Theorem | Lebesgue Differentiation Theorem | Fubini Theorem | Fubini Theorem | Hausdorff measure | Hausdorff measure | Area and Coarea Formulas | Area and Coarea Formulas | measure theory | measure theory | convolution | convolution | Fourier transform | Fourier transform | Lebesque Integration Theory | Lebesque Integration Theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.29J Introduction to Computational Neuroscience (MIT) 9.29J Introduction to Computational Neuroscience (MIT)

Description

This course gives a mathematical introduction to neural coding and dynamics. Topics include convolution, correlation, linear systems, game theory, signal detection theory, probability theory, information theory, and reinforcement learning. Applications to neural coding, focusing on the visual system are covered, as well as Hodgkin-Huxley and other related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission. Visit the Seung Lab Web site. This course gives a mathematical introduction to neural coding and dynamics. Topics include convolution, correlation, linear systems, game theory, signal detection theory, probability theory, information theory, and reinforcement learning. Applications to neural coding, focusing on the visual system are covered, as well as Hodgkin-Huxley and other related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission. Visit the Seung Lab Web site.

Subjects

neural coding | neural coding | dynamics | dynamics | convolution | convolution | correlation | correlation | linear systems | linear systems | Fourier analysis | Fourier analysis | signal detection theory | signal detection theory | probability theory | probability theory | information theory | information theory | neural excitability | neural excitability | stochastic models | stochastic models | ion channels | ion channels | cable theory | cable theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.327 Wavelets, Filter Banks and Applications (MIT) 18.327 Wavelets, Filter Banks and Applications (MIT)

Description

Wavelets are localized basis functions, good for representing short-time events. The coefficients at each scale are filtered and subsampled to give coefficients at the next scale. This is Mallat's pyramid algorithm for multiresolution, connecting wavelets to filter banks. Wavelets and multiscale algorithms for compression and signal/image processing are developed. Subject is project-based for engineering and scientific applications. Wavelets are localized basis functions, good for representing short-time events. The coefficients at each scale are filtered and subsampled to give coefficients at the next scale. This is Mallat's pyramid algorithm for multiresolution, connecting wavelets to filter banks. Wavelets and multiscale algorithms for compression and signal/image processing are developed. Subject is project-based for engineering and scientific applications.

Subjects

Discrete-time filters | Discrete-time filters | convolution | convolution | Fourier transform | Fourier transform | owpass and highpass filters | owpass and highpass filters | Sampling rate change operations | Sampling rate change operations | upsampling and downsampling | upsampling and downsampling | ractional sampling | ractional sampling | interpolation | interpolation | Filter Banks | Filter Banks | time domain (Haar example) and frequency domain | time domain (Haar example) and frequency domain | conditions for alias cancellation and no distortion | conditions for alias cancellation and no distortion | perfect reconstruction | perfect reconstruction | halfband filters and possible factorizations | halfband filters and possible factorizations | Modulation and polyphase representations | Modulation and polyphase representations | Noble identities | Noble identities | block Toeplitz matrices and block z-transforms | block Toeplitz matrices and block z-transforms | polyphase examples | polyphase examples | Matlab wavelet toolbox | Matlab wavelet toolbox | Orthogonal filter banks | Orthogonal filter banks | paraunitary matrices | paraunitary matrices | orthogonality condition (Condition O) in the time domain | orthogonality condition (Condition O) in the time domain | modulation domain and polyphase domain | modulation domain and polyphase domain | Maxflat filters | Maxflat filters | Daubechies and Meyer formulas | Daubechies and Meyer formulas | Spectral factorization | Spectral factorization | Multiresolution Analysis (MRA) | Multiresolution Analysis (MRA) | requirements for MRA | requirements for MRA | nested spaces and complementary spaces; scaling functions and wavelets | nested spaces and complementary spaces; scaling functions and wavelets | Refinement equation | Refinement equation | iterative and recursive solution techniques | iterative and recursive solution techniques | infinite product formula | infinite product formula | filter bank approach for computing scaling functions and wavelets | filter bank approach for computing scaling functions and wavelets | Orthogonal wavelet bases | Orthogonal wavelet bases | connection to orthogonal filters | connection to orthogonal filters | orthogonality in the frequency domain | orthogonality in the frequency domain | Biorthogonal wavelet bases | Biorthogonal wavelet bases | Mallat pyramid algorithm | Mallat pyramid algorithm | Accuracy of wavelet approximations (Condition A) | Accuracy of wavelet approximations (Condition A) | vanishing moments | vanishing moments | polynomial cancellation in filter banks | polynomial cancellation in filter banks | Smoothness of wavelet bases | Smoothness of wavelet bases | convergence of the cascade algorithm (Condition E) | convergence of the cascade algorithm (Condition E) | splines | splines | Bases vs. frames | Bases vs. frames | Signal and image processing | Signal and image processing | finite length signals | finite length signals | boundary filters and boundary wavelets | boundary filters and boundary wavelets | wavelet compression algorithms | wavelet compression algorithms | Lifting | Lifting | ladder structure for filter banks | ladder structure for filter banks | factorization of polyphase matrix into lifting steps | factorization of polyphase matrix into lifting steps | lifting form of refinement equationSec | lifting form of refinement equationSec | Wavelets and subdivision | Wavelets and subdivision | nonuniform grids | nonuniform grids | multiresolution for triangular meshes | multiresolution for triangular meshes | representation and compression of surfaces | representation and compression of surfaces | Numerical solution of PDEs | Numerical solution of PDEs | Galerkin approximation | Galerkin approximation | wavelet integrals (projection coefficients | moments and connection coefficients) | wavelet integrals (projection coefficients | moments and connection coefficients) | convergence | convergence | Subdivision wavelets for integral equations | Subdivision wavelets for integral equations | Compression and convergence estimates | Compression and convergence estimates | M-band wavelets | M-band wavelets | DFT filter banks and cosine modulated filter banks | DFT filter banks and cosine modulated filter banks | Multiwavelets | Multiwavelets

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.482J Foundations of Algorithms and Computational Techniques in Systems Biology (MIT) 20.482J Foundations of Algorithms and Computational Techniques in Systems Biology (MIT)

Description

This subject describes and illustrates computational approaches to solving problems in systems biology. A series of case-studies will be explored that demonstrate how an effective match between the statement of a biological problem and the selection of an appropriate algorithm or computational technique can lead to fundamental advances. The subject will cover several discrete and numerical algorithms used in simulation, feature extraction, and optimization for molecular, network, and systems models in biology. This subject describes and illustrates computational approaches to solving problems in systems biology. A series of case-studies will be explored that demonstrate how an effective match between the statement of a biological problem and the selection of an appropriate algorithm or computational technique can lead to fundamental advances. The subject will cover several discrete and numerical algorithms used in simulation, feature extraction, and optimization for molecular, network, and systems models in biology.

Subjects

systems biology | systems biology | algorithms | algorithms | computational techniques | computational techniques | protein modeling | protein modeling | discrete conformational search | discrete conformational search | molecular dynamics | molecular dynamics | electrostatics | electrostatics | network models | network models | deconvolution | deconvolution | nonlinear dynamics | nonlinear dynamics | 20.482 | 20.482 | 6.581 | 6.581

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.03 Differential Equations (MIT) 18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and

Subjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods | Laplace transform methods | Matrix systems | Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagrams | constant coefficients | constant coefficients | complex numbers | complex numbers | exponentials | exponentials | eigenvalues | eigenvalues | eigenvectors | eigenvectors

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.451 Principles of Digital Communication II (MIT) 6.451 Principles of Digital Communication II (MIT)

Description

This course is the second of a two-term sequence with 6.450. The focus is on coding techniques for approaching the Shannon limit of additive white Gaussian noise (AWGN) channels, their performance analysis, and design principles. After a review of 6.450 and the Shannon limit for AWGN channels, the course begins by discussing small signal constellations, performance analysis and coding gain, and hard-decision and soft-decision decoding. It continues with binary linear block codes, Reed-Muller codes, finite fields, Reed-Solomon and BCH codes, binary linear convolutional codes, and the Viterbi algorithm.More advanced topics include trellis representations of binary linear block codes and trellis-based decoding; codes on graphs; the sum-product and min-sum algorithms This course is the second of a two-term sequence with 6.450. The focus is on coding techniques for approaching the Shannon limit of additive white Gaussian noise (AWGN) channels, their performance analysis, and design principles. After a review of 6.450 and the Shannon limit for AWGN channels, the course begins by discussing small signal constellations, performance analysis and coding gain, and hard-decision and soft-decision decoding. It continues with binary linear block codes, Reed-Muller codes, finite fields, Reed-Solomon and BCH codes, binary linear convolutional codes, and the Viterbi algorithm.More advanced topics include trellis representations of binary linear block codes and trellis-based decoding; codes on graphs; the sum-product and min-sum algorithms

Subjects

coding techniques | coding techniques | the Shannon limit of additive white Gaussian noise channels | the Shannon limit of additive white Gaussian noise channels | performance analysis | performance analysis | Small signal constellations | Small signal constellations | coding gain | coding gain | Hard-decision and soft-decision decoding | Hard-decision and soft-decision decoding | Introduction to binary linear block codes | Introduction to binary linear block codes | Reed-Muller codes | Reed-Muller codes | finite fields | finite fields | Reed-Solomon and BCH codes | Reed-Solomon and BCH codes | binary linear convolutional codes | binary linear convolutional codes | Viterbi and BCJR algorithms | Viterbi and BCJR algorithms | Trellis representations of binary linear block codes | Trellis representations of binary linear block codes | trellis-based ML decoding | trellis-based ML decoding | Codes on graphs | Codes on graphs | sum-product | sum-product | max-product | max-product | decoding algorithms | decoding algorithms | Turbo codes | Turbo codes | LDPC codes and RA codes | LDPC codes and RA codes | Coding for the bandwidth-limited regime | Coding for the bandwidth-limited regime | Lattice codes | Lattice codes | Trellis-coded modulation | Trellis-coded modulation | Multilevel coding | Multilevel coding | Shaping | Shaping

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.085 Computational Science and Engineering I (MIT) 18.085 Computational Science and Engineering I (MIT)

Description

This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: differential equations of equilibrium; Laplace's equation and potential flow; boundary-value problems; minimum principles and calculus of variations; Fourier series; discrete Fourier transform; convolution; and applications.Note: This course was previously called "Mathematical Methods for Engineers I". This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: differential equations of equilibrium; Laplace's equation and potential flow; boundary-value problems; minimum principles and calculus of variations; Fourier series; discrete Fourier transform; convolution; and applications.Note: This course was previously called "Mathematical Methods for Engineers I".

Subjects

linear algebra | linear algebra | networks | networks | Lagrange multipliers | Lagrange multipliers | differential equations of equilibrium | differential equations of equilibrium | Laplace's equation | Laplace's equation | potential flow | potential flow | boundary-value problems | boundary-value problems | Fourier series | Fourier series | discrete Fourier transform | discrete Fourier transform | convolution | convolution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.017J Design of Electromechanical Robotic Systems (MIT) 2.017J Design of Electromechanical Robotic Systems (MIT)

Description

This course covers the design, construction, and testing of field robotic systems, through team projects with each student responsible for a specific subsystem. Projects focus on electronics, instrumentation, and machine elements. Design for operation in uncertain conditions is a focus point, with ocean waves and marine structures as a central theme. Topics include basic statistics, linear systems, Fourier transforms, random processes, spectra, ethics in engineering practice, and extreme events with applications in design. This course covers the design, construction, and testing of field robotic systems, through team projects with each student responsible for a specific subsystem. Projects focus on electronics, instrumentation, and machine elements. Design for operation in uncertain conditions is a focus point, with ocean waves and marine structures as a central theme. Topics include basic statistics, linear systems, Fourier transforms, random processes, spectra, ethics in engineering practice, and extreme events with applications in design.

Subjects

optimization | optimization | random environment | random environment | linear time invariant systems | linear time invariant systems | navigation systems | navigation systems | engineering ethics | engineering ethics | spectra | spectra | probability of failure | probability of failure | frequency response | frequency response | Fourier transform | Fourier transform | convolution | convolution | extreme events | extreme events | feedback control | feedback control | statistics | statistics | machine elements | machine elements

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.03SC Differential Equations (MIT) 18.03SC Differential Equations (MIT)

Description

Includes audio/video content: AV lectures. The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering. Includes audio/video content: AV lectures. The laws of nature are expressed as differential equations. Scientists and engineers must know how to model the world in terms of differential equations, and how to solve those equations and interpret the solutions. This course focuses on the equations and techniques most useful in science and engineering.

Subjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods | Laplace transform methods | Matrix systems | Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagrams

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.161 Signal Processing: Continuous and Discrete (MIT) 2.161 Signal Processing: Continuous and Discrete (MIT)

Description

This course provides a solid theoretical foundation for the analysis and processing of experimental data, and real-time experimental control methods. Topics covered include spectral analysis, filter design, system identification, and simulation in continuous and discrete-time domains. The emphasis is on practical problems with laboratory exercises. This course provides a solid theoretical foundation for the analysis and processing of experimental data, and real-time experimental control methods. Topics covered include spectral analysis, filter design, system identification, and simulation in continuous and discrete-time domains. The emphasis is on practical problems with laboratory exercises.

Subjects

analysis and processing of experimental data; real-time experimental control methods; spectral analysis; filter design; system identification; simulation in continuous and discrete-time domains; MATLAB | analysis and processing of experimental data; real-time experimental control methods; spectral analysis; filter design; system identification; simulation in continuous and discrete-time domains; MATLAB | fast Fourier transform | fast Fourier transform | correlation function | correlation function | sampling | sampling | op-amps | op-amps | Chebyshev | Chebyshev | Laplace transform | Laplace transform | Butterworth | Butterworth | convolution | convolution | frequency response | frequency response | windowing | windowing | low-pass | low-pass | poles | poles | zeros | zeros

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

RES.6-008 Digital Signal Processing (MIT) RES.6-008 Digital Signal Processing (MIT)

Description

Includes audio/video content: AV lectures. This course was developed in 1987 by the MIT Center for Advanced Engineering Studies. It was designed as a distance-education course for engineers and scientists in the workplace. Advances in integrated circuit technology have had a major impact on the technical areas to which digital signal processing techniques and hardware are being applied. A thorough understanding of digital signal processing fundamentals and techniques is essential for anyone whose work is concerned with signal processing applications. Digital Signal Processing begins with a discussion of the analysis and representation of discrete-time signal systems, including discrete-time convolution, difference equations, the z-transform, and the discrete-time Fourier transform. Emphasi Includes audio/video content: AV lectures. This course was developed in 1987 by the MIT Center for Advanced Engineering Studies. It was designed as a distance-education course for engineers and scientists in the workplace. Advances in integrated circuit technology have had a major impact on the technical areas to which digital signal processing techniques and hardware are being applied. A thorough understanding of digital signal processing fundamentals and techniques is essential for anyone whose work is concerned with signal processing applications. Digital Signal Processing begins with a discussion of the analysis and representation of discrete-time signal systems, including discrete-time convolution, difference equations, the z-transform, and the discrete-time Fourier transform. Emphasi

Subjects

discrete-time signals and systems | discrete-time signals and systems | convolution difference equations | convolution difference equations | z-transform | z-transform | digital network structure | digital network structure | recursive infinite impulse response | recursive infinite impulse response | nonrecursive finite impulse response | nonrecursive finite impulse response | digital filter design | digital filter design | fast Fourier transform algorithm | fast Fourier transform algorithm | discrete Fourier transform | discrete Fourier transform

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.03 Differential Equations (MIT) 18.03 Differential Equations (MIT)

Description

Includes audio/video content: AV lectures. Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Includes audio/video content: AV lectures. Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time.

Subjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods | Laplace transform methods | Matrix systems | Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagrams

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.03 Differential Equations (MIT) 18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and

Subjects

Ordinary Differential Equations | Ordinary Differential Equations | ODE | ODE | modeling physical systems | modeling physical systems | first-order ODE's | first-order ODE's | Linear ODE's | Linear ODE's | second order ODE's | second order ODE's | second order ODE's with constant coefficients | second order ODE's with constant coefficients | Undetermined coefficients | Undetermined coefficients | variation of parameters | variation of parameters | Sinusoidal signals | Sinusoidal signals | exponential signals | exponential signals | oscillations | oscillations | damping | damping | resonance | resonance | Complex numbers and exponentials | Complex numbers and exponentials | Fourier series | Fourier series | periodic solutions | periodic solutions | Delta functions | Delta functions | convolution | convolution | Laplace transform methods Matrix systems | Laplace transform methods Matrix systems | first order linear systems | first order linear systems | eigenvalues and eigenvectors | eigenvalues and eigenvectors | Non-linear autonomous systems | Non-linear autonomous systems | critical point analysis | critical point analysis | phase plane diagrams | phase plane diagrams

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.017J Design of Electromechanical Robotic Systems (MIT)

Description

This course covers the design, construction, and testing of field robotic systems, through team projects with each student responsible for a specific subsystem. Projects focus on electronics, instrumentation, and machine elements. Design for operation in uncertain conditions is a focus point, with ocean waves and marine structures as a central theme. Topics include basic statistics, linear systems, Fourier transforms, random processes, spectra, ethics in engineering practice, and extreme events with applications in design.

Subjects

optimization | random environment | linear time invariant systems | navigation systems | engineering ethics | spectra | probability of failure | frequency response | Fourier transform | convolution | extreme events | feedback control | statistics | machine elements

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.03 Differential Equations (MIT)

Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and

Subjects

Ordinary Differential Equations | ODE | modeling physical systems | first-order ODE's | Linear ODE's | second order ODE's | second order ODE's with constant coefficients | Undetermined coefficients | variation of parameters | Sinusoidal signals | exponential signals | oscillations | damping | resonance | Complex numbers and exponentials | Fourier series | periodic solutions | Delta functions | convolution | Laplace transform methods | Matrix systems | first order linear systems | eigenvalues and eigenvectors | Non-linear autonomous systems | critical point analysis | phase plane diagrams | constant coefficients | complex numbers | exponentials | eigenvalues | eigenvectors

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.161 Signal Processing: Continuous and Discrete (MIT)

Description

This course provides a solid theoretical foundation for the analysis and processing of experimental data, and real-time experimental control methods. Topics covered include spectral analysis, filter design, system identification, and simulation in continuous and discrete-time domains. The emphasis is on practical problems with laboratory exercises.

Subjects

analysis and processing of experimental data; real-time experimental control methods; spectral analysis; filter design; system identification; simulation in continuous and discrete-time domains; MATLAB | fast Fourier transform | correlation function | sampling | op-amps | Chebyshev | Laplace transform | Butterworth | convolution | frequency response | windowing | low-pass | poles | zeros

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.451 Principles of Digital Communication II (MIT)

Description

This course is the second of a two-term sequence with 6.450. The focus is on coding techniques for approaching the Shannon limit of additive white Gaussian noise (AWGN) channels, their performance analysis, and design principles. After a review of 6.450 and the Shannon limit for AWGN channels, the course begins by discussing small signal constellations, performance analysis and coding gain, and hard-decision and soft-decision decoding. It continues with binary linear block codes, Reed-Muller codes, finite fields, Reed-Solomon and BCH codes, binary linear convolutional codes, and the Viterbi algorithm.More advanced topics include trellis representations of binary linear block codes and trellis-based decoding; codes on graphs; the sum-product and min-sum algorithms

Subjects

coding techniques | the Shannon limit of additive white Gaussian noise channels | performance analysis | Small signal constellations | coding gain | Hard-decision and soft-decision decoding | Introduction to binary linear block codes | Reed-Muller codes | finite fields | Reed-Solomon and BCH codes | binary linear convolutional codes | Viterbi and BCJR algorithms | Trellis representations of binary linear block codes | trellis-based ML decoding | Codes on graphs | sum-product | max-product | decoding algorithms | Turbo codes | LDPC codes and RA codes | Coding for the bandwidth-limited regime | Lattice codes | Trellis-coded modulation | Multilevel coding | Shaping

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata