Searching for cytokines : 5 results found | RSS Feed for this search

7.340 Immune Evasion: How Sneaky Pathogens Avoid Host Surveillance (MIT) 7.340 Immune Evasion: How Sneaky Pathogens Avoid Host Surveillance (MIT)

Description

Every infection consists of a battle between the invading pathogen and the resisting host. To be successful, a pathogen must escape the many defenses of the host immune system until it can replicate and spread to another host. A pathogen must prevent one of three stages of immune function: detection, activation, or effector function. Examples of disease-specific immune evasion and the mechanisms used by pathogens to prevail over their hosts' immune systems are discussed. Also considered is what these host-pathogen interactions reveal about the normal function of the immune system and basic cell biological processes, such as protein maturation and degradation. Every infection consists of a battle between the invading pathogen and the resisting host. To be successful, a pathogen must escape the many defenses of the host immune system until it can replicate and spread to another host. A pathogen must prevent one of three stages of immune function: detection, activation, or effector function. Examples of disease-specific immune evasion and the mechanisms used by pathogens to prevail over their hosts' immune systems are discussed. Also considered is what these host-pathogen interactions reveal about the normal function of the immune system and basic cell biological processes, such as protein maturation and degradation.

Subjects

immunology | immunology | immune system | immune system | immune evasion | immune evasion | pathogen | pathogen | effector function | effector function | infections | infections | Human cytomegalovirus | Human cytomegalovirus | Human Immunodeficiency Virus | Human Immunodeficiency Virus | CD4 cells | CD4 cells | CD8 cells | CD8 cells | T cells | T cells | surace receptors | surace receptors | cell lysis | cell lysis | host-pathogen interactions | host-pathogen interactions | host surveillance | host surveillance | antibodies | antibodies | MHC class I | MHC class I | blood-borne pathogens | blood-borne pathogens | macrophages | macrophages | phagocytosis | phagocytosis | endocytosis | endocytosis | degradation | degradation | antigen | antigen | apoptosis | apoptosis | cytokines | cytokines | immune response | immune response

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Immunology basics Immunology basics

Description

This is a module framework. It can be viewed online or downloaded as a zip file. As taught Autumn semester 2009 Infections are a major cause of morbidity and mortality worldwide. The body fights infection through the functions of the immune system, whose power has been harnessed by the development of vaccination (immunisation). Suitable for study at: Undergraduate levels 1 and 2. Dr Ian Todd, School of Molecular Medical Sciences Dr Ian Todd is Associate Professor & Reader in Cellular Immunopathology at The University of Nottingham. After reading Biochemistry at The University of Oxford, he carried out research for his PhD in Immunology at University College London. He then undertook post-doctoral research at The Oregon Health Sciences University and The Middlesex Hospital Medica This is a module framework. It can be viewed online or downloaded as a zip file. As taught Autumn semester 2009 Infections are a major cause of morbidity and mortality worldwide. The body fights infection through the functions of the immune system, whose power has been harnessed by the development of vaccination (immunisation). Suitable for study at: Undergraduate levels 1 and 2. Dr Ian Todd, School of Molecular Medical Sciences Dr Ian Todd is Associate Professor & Reader in Cellular Immunopathology at The University of Nottingham. After reading Biochemistry at The University of Oxford, he carried out research for his PhD in Immunology at University College London. He then undertook post-doctoral research at The Oregon Health Sciences University and The Middlesex Hospital Medica

Subjects

UNow | UNow | UKOER | UKOER | Immunology | Immunology | Introduction to immunology | Introduction to immunology | Recognition of extracellular pathogens | Recognition of extracellular pathogens | Defence against extracellular pathogens | Defence against extracellular pathogens | T cell-mediated immunity | T cell-mediated immunity | Helper T cells and cytokines | Helper T cells and cytokines | Immunity to viruses | Immunity to viruses

License

Except for third party materials (materials owned by someone other than The University of Nottingham) and where otherwise indicated, the copyright in the content provided in this resource is owned by The University of Nottingham and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike UK 2.0 Licence (BY-NC-SA) Except for third party materials (materials owned by someone other than The University of Nottingham) and where otherwise indicated, the copyright in the content provided in this resource is owned by The University of Nottingham and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike UK 2.0 Licence (BY-NC-SA)

Site sourced from

http://unow.nottingham.ac.uk/rss.ashx

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Immunology basics

Description

Learning. Important Copyright Information: All images, tables and figures in this resource were reproduced from 'Lecture Notes Immunology' April 2010, 6th Edition, published by Wiley-Blackwell and with full permission of the co-author and faculty member, Dr Ian Todd. No image, table or figure in this resource can be reproduced without prior permission from publishers Wiley-Blackwell.

Subjects

ukoer | immunology | immunology basics | introduction to immunology | recognition of extracellular pathogens | defence against extracellular pathogens | t cell-mediated immunity | helper t cells and cytokines | immunity to viruses | Subjects allied to medicine | B000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Cell Biology

Description

This course will present the student with a detailed overview of a cell’s main components and functions. The course is roughly organized into four major areas: the cell membrane, cell nucleus, cell cycle, and cell interior. The student will approach most of these topics straightforwardly, from a molecular and structural point of view. This free course may be completed online at any time. See course site for detailed overview and learning outcomes. (Biology 301)

Subjects

biology | cells | chemistry | membrane | cell signaling | extracellular matrix | cytoskeleton | genes | nucleus | mitosis | meiosis | cytokinesis | cell cycle | transport | organelle | Biological sciences | C000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.340 Immune Evasion: How Sneaky Pathogens Avoid Host Surveillance (MIT)

Description

Every infection consists of a battle between the invading pathogen and the resisting host. To be successful, a pathogen must escape the many defenses of the host immune system until it can replicate and spread to another host. A pathogen must prevent one of three stages of immune function: detection, activation, or effector function. Examples of disease-specific immune evasion and the mechanisms used by pathogens to prevail over their hosts' immune systems are discussed. Also considered is what these host-pathogen interactions reveal about the normal function of the immune system and basic cell biological processes, such as protein maturation and degradation.

Subjects

immunology | immune system | immune evasion | pathogen | effector function | infections | Human cytomegalovirus | Human Immunodeficiency Virus | CD4 cells | CD8 cells | T cells | surace receptors | cell lysis | host-pathogen interactions | host surveillance | antibodies | MHC class I | blood-borne pathogens | macrophages | phagocytosis | endocytosis | degradation | antigen | apoptosis | cytokines | immune response

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata