Searching for deformation : 184 results found | RSS Feed for this search

1 2 3 4 5 6 7

12.520 Geodynamics (MIT) 12.520 Geodynamics (MIT)

Description

This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic. This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic.

Subjects

Geodynamics | Geodynamics | crust | crust | mantle | mantle | rheological descriptions | rheological descriptions | brittle deformation | brittle deformation | elastic deformation | elastic deformation | viscous deformation | viscous deformation | viscoelastic deformation | viscoelastic deformation | plastic deformation | plastic deformation | nonlinear fluids | nonlinear fluids | stress | stress | strain | strain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.005 Applications of Continuum Mechanics to Earth, Atmospheric, and Planetary Sciences (MIT) 12.005 Applications of Continuum Mechanics to Earth, Atmospheric, and Planetary Sciences (MIT)

Description

This course focuses on the practical applications of the continuum concept for deformation of solids and fluids, emphasizing force balance. Topics include stress tensor, infinitesimal and finite strain, and rotation tensors. Constitutive relations applicable to geological materials, including elastic, viscous, brittle, and plastic deformation are studied. This course focuses on the practical applications of the continuum concept for deformation of solids and fluids, emphasizing force balance. Topics include stress tensor, infinitesimal and finite strain, and rotation tensors. Constitutive relations applicable to geological materials, including elastic, viscous, brittle, and plastic deformation are studied.

Subjects

Geodynamics | Geodynamics | crust | crust | mantle | mantle | rheological descriptions | rheological descriptions | brittle deformation | brittle deformation | elastic deformation | elastic deformation | viscous deformation | viscous deformation | viscoelastic deformation | viscoelastic deformation | plastic deformation | plastic deformation | nonlinear fluids | nonlinear fluids | stress | stress | strain | strain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.005 Applications of Continuum Mechanics to Earth, Atmospheric, and Planetary Sciences (MIT) 12.005 Applications of Continuum Mechanics to Earth, Atmospheric, and Planetary Sciences (MIT)

Description

This course focuses on the practical applications of the continuum concept for deformation of solids and fluids, emphasizing force balance. Topics include stress tensor, infinitesimal and finite strain, and rotation tensors. Constitutive relations applicable to geological materials, including elastic, viscous, brittle, and plastic deformation are studied. This course focuses on the practical applications of the continuum concept for deformation of solids and fluids, emphasizing force balance. Topics include stress tensor, infinitesimal and finite strain, and rotation tensors. Constitutive relations applicable to geological materials, including elastic, viscous, brittle, and plastic deformation are studied.

Subjects

Geodynamics | Geodynamics | crust | crust | mantle | mantle | rheological descriptions | rheological descriptions | brittle deformation | brittle deformation | elastic deformation | elastic deformation | viscous deformation | viscous deformation | viscoelastic deformation | viscoelastic deformation | plastic deformation | plastic deformation | nonlinear fluids | nonlinear fluids | stress | stress | strain | strain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.520 Geodynamics (MIT) 12.520 Geodynamics (MIT)

Description

This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic.Technical RequirementsSpecial software is required to use some of the files in this course: .avi. This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic.Technical RequirementsSpecial software is required to use some of the files in this course: .avi.

Subjects

Geodynamics | Geodynamics | crust | crust | mantle | mantle | rheological descriptions | rheological descriptions | brittle deformation | brittle deformation | elastic deformation | elastic deformation | viscous deformation | viscous deformation | viscoelastic deformation | viscoelastic deformation | plastic deformation | plastic deformation | nonlinear fluids | nonlinear fluids | stress | stress | strain | strain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.520 Geodynamics (MIT) 12.520 Geodynamics (MIT)

Description

This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic. This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic.

Subjects

Geodynamics | Geodynamics | crust | crust | mantle | mantle | rheological descriptions | rheological descriptions | brittle deformation | brittle deformation | elastic deformation | elastic deformation | viscous deformation | viscous deformation | viscoelastic deformation | viscoelastic deformation | plastic deformation | plastic deformation | nonlinear fluids | nonlinear fluids | stress | stress | strain | strain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.520 Geodynamics (MIT) 12.520 Geodynamics (MIT)

Description

This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic. This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic.

Subjects

Geodynamics | Geodynamics | crust | crust | mantle | mantle | rheological descriptions | rheological descriptions | brittle deformation | brittle deformation | elastic deformation | elastic deformation | viscous deformation | viscous deformation | viscoelastic deformation | viscoelastic deformation | plastic deformation | plastic deformation | nonlinear fluids | nonlinear fluids | stress | stress | strain | strain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.005 Applications of Continuum Mechanics to Earth, Atmospheric, and Planetary Sciences (MIT) 12.005 Applications of Continuum Mechanics to Earth, Atmospheric, and Planetary Sciences (MIT)

Description

This course focuses on the practical applications of the continuum concept for deformation of solids and fluids, emphasizing force balance. Topics include stress tensor, infinitesimal and finite strain, and rotation tensors. Constitutive relations applicable to geological materials, including elastic, viscous, brittle, and plastic deformation are studied. This course focuses on the practical applications of the continuum concept for deformation of solids and fluids, emphasizing force balance. Topics include stress tensor, infinitesimal and finite strain, and rotation tensors. Constitutive relations applicable to geological materials, including elastic, viscous, brittle, and plastic deformation are studied.

Subjects

Geodynamics | Geodynamics | crust | crust | mantle | mantle | rheological descriptions | rheological descriptions | brittle deformation | brittle deformation | elastic deformation | elastic deformation | viscous deformation | viscous deformation | viscoelastic deformation | viscoelastic deformation | plastic deformation | plastic deformation | nonlinear fluids | nonlinear fluids | stress | stress | strain | strain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.520 Geodynamics (MIT) 12.520 Geodynamics (MIT)

Description

This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic.Technical RequirementsSpecial software is required to use some of the files in this course: .avi. This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic.Technical RequirementsSpecial software is required to use some of the files in this course: .avi.

Subjects

Geodynamics | Geodynamics | crust | crust | mantle | mantle | rheological descriptions | rheological descriptions | brittle deformation | brittle deformation | elastic deformation | elastic deformation | viscous deformation | viscous deformation | viscoelastic deformation | viscoelastic deformation | plastic deformation | plastic deformation | nonlinear fluids | nonlinear fluids | stress | stress | strain | strain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.520 Geodynamics (MIT) 12.520 Geodynamics (MIT)

Description

This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic. This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic.

Subjects

Geodynamics | Geodynamics | crust | crust | mantle | mantle | rheological descriptions | rheological descriptions | brittle deformation | brittle deformation | elastic deformation | elastic deformation | viscous deformation | viscous deformation | viscoelastic deformation | viscoelastic deformation | plastic deformation | plastic deformation | nonlinear fluids | nonlinear fluids | stress | stress | strain | strain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.005 Applications of Continuum Mechanics to Earth, Atmospheric, and Planetary Sciences (MIT) 12.005 Applications of Continuum Mechanics to Earth, Atmospheric, and Planetary Sciences (MIT)

Description

This course focuses on the practical applications of the continuum concept for deformation of solids and fluids, emphasizing force balance. Topics include stress tensor, infinitesimal and finite strain, and rotation tensors. Constitutive relations applicable to geological materials, including elastic, viscous, brittle, and plastic deformation are studied. This course focuses on the practical applications of the continuum concept for deformation of solids and fluids, emphasizing force balance. Topics include stress tensor, infinitesimal and finite strain, and rotation tensors. Constitutive relations applicable to geological materials, including elastic, viscous, brittle, and plastic deformation are studied.

Subjects

Geodynamics | Geodynamics | crust | crust | mantle | mantle | rheological descriptions | rheological descriptions | brittle deformation | brittle deformation | elastic deformation | elastic deformation | viscous deformation | viscous deformation | viscoelastic deformation | viscoelastic deformation | plastic deformation | plastic deformation | nonlinear fluids | nonlinear fluids | stress | stress | strain | strain

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.225 Computational Mechanics of Materials (MIT) 16.225 Computational Mechanics of Materials (MIT)

Description

16.225 is a graduate level course on Computational Mechanics of Materials. The primary focus of this course is on the teaching of state-of-the-art numerical methods for the analysis of the nonlinear continuum response of materials. The range of material behavior considered in this course includes: linear and finite deformation elasticity, inelasticity and dynamics. Numerical formulation and algorithms include: variational formulation and variational constitutive updates, finite element discretization, error estimation, constrained problems, time integration algorithms and convergence analysis. There is a strong emphasis on the (parallel) computer implementation of algorithms in programming assignments. The application to real engineering applications and problems in engineering science is 16.225 is a graduate level course on Computational Mechanics of Materials. The primary focus of this course is on the teaching of state-of-the-art numerical methods for the analysis of the nonlinear continuum response of materials. The range of material behavior considered in this course includes: linear and finite deformation elasticity, inelasticity and dynamics. Numerical formulation and algorithms include: variational formulation and variational constitutive updates, finite element discretization, error estimation, constrained problems, time integration algorithms and convergence analysis. There is a strong emphasis on the (parallel) computer implementation of algorithms in programming assignments. The application to real engineering applications and problems in engineering science is

Subjects

Computational Mechanics | Computational Mechanics | Computation | Computation | Mechanics | Mechanics | Materials | Materials | Numerical Methods | Numerical Methods | Numerical | Numerical | Nonlinear Continuum Response | Nonlinear Continuum Response | Continuum | Continuum | Deformation | Deformation | Elasticity | Elasticity | Inelasticity | Inelasticity | Dynamics | Dynamics | Variational Formulation | Variational Formulation | Variational Constitutive Updates | Variational Constitutive Updates | Finite Element | Finite Element | Discretization | Discretization | Error Estimation | Error Estimation | Constrained Problems | Constrained Problems | Time Integration | Time Integration | Convergence Analysis | Convergence Analysis | Programming | Programming | Continuum Response | Continuum Response | Computational | Computational | state-of-the-art | state-of-the-art | methods | methods | modeling | modeling | simulation | simulation | mechanical | mechanical | response | response | engineering | engineering | aerospace | aerospace | civil | civil | material | material | science | science | biomechanics | biomechanics | behavior | behavior | finite | finite | deformation | deformation | elasticity | elasticity | inelasticity | inelasticity | contact | contact | friction | friction | coupled | coupled | numerical | numerical | formulation | formulation | algorithms | algorithms | Variational | Variational | constitutive | constitutive | updates | updates | element | element | discretization | discretization | mesh | mesh | generation | generation | error | error | estimation | estimation | constrained | constrained | problems | problems | time | time | convergence | convergence | analysis | analysis | parallel | parallel | computer | computer | implementation | implementation | programming | programming | assembly | assembly | equation-solving | equation-solving | formulating | formulating | implementing | implementing | complex | complex | approximations | approximations | equations | equations | motion | motion | dynamic | dynamic | deformations | deformations | continua | continua | plasticity | plasticity | rate-dependency | rate-dependency | integration | integration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.225 Computational Mechanics of Materials (MIT) 16.225 Computational Mechanics of Materials (MIT)

Description

16.225 is a graduate level course on Computational Mechanics of Materials. The primary focus of this course is on the teaching of state-of-the-art numerical methods for the analysis of the nonlinear continuum response of materials. The range of material behavior considered in this course includes: linear and finite deformation elasticity, inelasticity and dynamics. Numerical formulation and algorithms include: variational formulation and variational constitutive updates, finite element discretization, error estimation, constrained problems, time integration algorithms and convergence analysis. There is a strong emphasis on the (parallel) computer implementation of algorithms in programming assignments. The application to real engineering applications and problems in engineering science is 16.225 is a graduate level course on Computational Mechanics of Materials. The primary focus of this course is on the teaching of state-of-the-art numerical methods for the analysis of the nonlinear continuum response of materials. The range of material behavior considered in this course includes: linear and finite deformation elasticity, inelasticity and dynamics. Numerical formulation and algorithms include: variational formulation and variational constitutive updates, finite element discretization, error estimation, constrained problems, time integration algorithms and convergence analysis. There is a strong emphasis on the (parallel) computer implementation of algorithms in programming assignments. The application to real engineering applications and problems in engineering science is

Subjects

Computational Mechanics | Computational Mechanics | Computation | Computation | Mechanics | Mechanics | Materials | Materials | Numerical Methods | Numerical Methods | Numerical | Numerical | Nonlinear Continuum Response | Nonlinear Continuum Response | Continuum | Continuum | Deformation | Deformation | Elasticity | Elasticity | Inelasticity | Inelasticity | Dynamics | Dynamics | Variational Formulation | Variational Formulation | Variational Constitutive Updates | Variational Constitutive Updates | Finite Element | Finite Element | Discretization | Discretization | Error Estimation | Error Estimation | Constrained Problems | Constrained Problems | Time Integration | Time Integration | Convergence Analysis | Convergence Analysis | Programming | Programming | Continuum Response | Continuum Response | Computational | Computational | state-of-the-art | state-of-the-art | methods | methods | modeling | modeling | simulation | simulation | mechanical | mechanical | response | response | engineering | engineering | aerospace | aerospace | civil | civil | material | material | science | science | biomechanics | biomechanics | behavior | behavior | finite | finite | deformation | deformation | elasticity | elasticity | inelasticity | inelasticity | contact | contact | friction | friction | coupled | coupled | numerical | numerical | formulation | formulation | algorithms | algorithms | Variational | Variational | constitutive | constitutive | updates | updates | element | element | discretization | discretization | mesh | mesh | generation | generation | error | error | estimation | estimation | constrained | constrained | problems | problems | time | time | convergence | convergence | analysis | analysis | parallel | parallel | computer | computer | implementation | implementation | programming | programming | assembly | assembly | equation-solving | equation-solving | formulating | formulating | implementing | implementing | complex | complex | approximations | approximations | equations | equations | motion | motion | dynamic | dynamic | deformations | deformations | continua | continua | plasticity | plasticity | rate-dependency | rate-dependency | integration | integration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.524 Mechanical Properties of Rocks (MIT) 12.524 Mechanical Properties of Rocks (MIT)

Description

12.524 is a survey of the mechanical behavior of rocks in natural geologic situations. Topics will include a brief survey of field evidence of rock deformation, physics of plastic deformation in minerals, brittle fracture and sliding, and pressure-solution processes. We will compare results of field petrologic and structural studies to data from experimental structural geology. 12.524 is a survey of the mechanical behavior of rocks in natural geologic situations. Topics will include a brief survey of field evidence of rock deformation, physics of plastic deformation in minerals, brittle fracture and sliding, and pressure-solution processes. We will compare results of field petrologic and structural studies to data from experimental structural geology.

Subjects

mechanical behavior of rocks | mechanical behavior of rocks | rock deformation | rock deformation | plastic deformation | plastic deformation | minerals | minerals | rock mechanics | rock mechanics | brittle fracture | brittle fracture | pressure-solution processes | pressure-solution processes | field evidence | field evidence | experimental structural geology | experimental structural geology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.113 Structural Geology (MIT) 12.113 Structural Geology (MIT)

Description

Structural geology is the study of processes and products of rock deformation. This course introduces the techniques of structural geology through a survey of the mechanics of rock deformation, a survey of the features and geometries of faults and folds, and techniques of strain analysis. Regional structural geology and tectonics are introduced. Class lectures are supplemented by lab exercises and demonstrations as well as field trips to local outcrops. Structural geology is the study of processes and products of rock deformation. This course introduces the techniques of structural geology through a survey of the mechanics of rock deformation, a survey of the features and geometries of faults and folds, and techniques of strain analysis. Regional structural geology and tectonics are introduced. Class lectures are supplemented by lab exercises and demonstrations as well as field trips to local outcrops.

Subjects

rock deformation | rock deformation | faults | faults | structural geology | structural geology | folds | folds | superposed deformations | superposed deformations | regional geology | regional geology | tectonics | tectonics | structural analysis | structural analysis | geologic maps | geologic maps | interpretive cross sections | interpretive cross sections

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.033 Mechanics of Material Systems: An Energy Approach (MIT) 1.033 Mechanics of Material Systems: An Energy Approach (MIT)

Description

1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students. 1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students.

Subjects

continuum mechanics | continuum mechanics | material modeling | material modeling | engineering materials | engineering materials | energy principles: deformation and strain | energy principles: deformation and strain | momentum balance | momentum balance | stress | stress | stress states | stress states | elasticity and elasticity bounds | elasticity and elasticity bounds | plasticity | plasticity | yield design | yield design | first energy principles | first energy principles | deformation | deformation | strain | strain | elasticity bounds | elasticity bounds | unified mechanistic language | unified mechanistic language | thermodynamics | thermodynamics | engineering structures | engineering structures | unified framework | unified framework | irreversible processes | irreversible processes | structural engineering | structural engineering | soil mechanics | soil mechanics | mechanical engineering | mechanical engineering | materials science | materials science | solids | solids | durability mechanics | durability mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.033 Mechanics of Material Systems: An Energy Approach (MIT) 1.033 Mechanics of Material Systems: An Energy Approach (MIT)

Description

1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students. 1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students.

Subjects

continuum mechanics | continuum mechanics | material modeling | material modeling | engineering materials | engineering materials | energy principles: deformation and strain | energy principles: deformation and strain | momentum balance | momentum balance | stress | stress | stress states | stress states | elasticity and elasticity bounds | elasticity and elasticity bounds | plasticity | plasticity | yield design | yield design | first energy principles | first energy principles | deformation | deformation | strain | strain | elasticity bounds | elasticity bounds | unified mechanistic language | unified mechanistic language | thermodynamics | thermodynamics | engineering structures | engineering structures | unified framework | unified framework | irreversible processes | irreversible processes | structural engineering | structural engineering | soil mechanics | soil mechanics | mechanical engineering | mechanical engineering | materials science | materials science | solids | solids | durability mechanics | durability mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.033 Mechanics of Material Systems: An Energy Approach (MIT) 1.033 Mechanics of Material Systems: An Energy Approach (MIT)

Description

1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students. 1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students.

Subjects

continuum mechanics | continuum mechanics | material modeling | material modeling | engineering materials | engineering materials | energy principles: deformation and strain | energy principles: deformation and strain | momentum balance | momentum balance | stress | stress | stress states | stress states | elasticity and elasticity bounds | elasticity and elasticity bounds | plasticity | plasticity | yield design | yield design | first energy principles | first energy principles | deformation | deformation | strain | strain | elasticity bounds | elasticity bounds | unified mechanistic language | unified mechanistic language | thermodynamics | thermodynamics | engineering structures | engineering structures | unified framework | unified framework | irreversible processes | irreversible processes | structural engineering | structural engineering | soil mechanics | soil mechanics | mechanical engineering | mechanical engineering | materials science | materials science | solids | solids | durability mechanics | durability mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.524 Mechanical Properties of Rocks (MIT) 12.524 Mechanical Properties of Rocks (MIT)

Description

12.524 is a survey of the mechanical behavior of rocks in natural geologic situations. Topics will include a brief survey of field evidence of rock deformation, physics of plastic deformation in minerals, brittle fracture and sliding, and pressure-solution processes. We will compare results of field petrologic and structural studies to data from experimental structural geology. 12.524 is a survey of the mechanical behavior of rocks in natural geologic situations. Topics will include a brief survey of field evidence of rock deformation, physics of plastic deformation in minerals, brittle fracture and sliding, and pressure-solution processes. We will compare results of field petrologic and structural studies to data from experimental structural geology.

Subjects

mechanical behavior of rocks | mechanical behavior of rocks | rock deformation | rock deformation | plastic deformation | plastic deformation | minerals | minerals | rock mechanics | rock mechanics | brittle fracture | brittle fracture | pressure-solution processes | pressure-solution processes | field evidence | field evidence | experimental structural geology | experimental structural geology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.113 Structural Geology (MIT) 12.113 Structural Geology (MIT)

Description

Structural geology is the study of processes and products of rock deformation. This course introduces the techniques of structural geology through a survey of the mechanics of rock deformation, a survey of the features and geometries of faults and folds, and techniques of strain analysis. Regional structural geology and tectonics are introduced. Class lectures are supplemented by lab exercises and demonstrations as well as field trips to local outcrops. Structural geology is the study of processes and products of rock deformation. This course introduces the techniques of structural geology through a survey of the mechanics of rock deformation, a survey of the features and geometries of faults and folds, and techniques of strain analysis. Regional structural geology and tectonics are introduced. Class lectures are supplemented by lab exercises and demonstrations as well as field trips to local outcrops.

Subjects

rock deformation | rock deformation | faults | faults | structural geology | structural geology | folds | folds | superposed deformations | superposed deformations | regional geology | regional geology | tectonics | tectonics | structural analysis | structural analysis | geologic maps | geologic maps | interpretive cross sections | interpretive cross sections

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Changes in microstructure of a shape memory alloy (CuAlNi single crystal) Changes in microstructure of a shape memory alloy (CuAlNi single crystal)

Description

Changes in microstructure of a shape memory alloy being heat treated and also mechanically deformed. A CuAlNi single crystal (2H orthorhombic phase ) is compressed (vertical axis) at room temperature, causing activation of two sequential twinning deformations. As austenite, the crystal is cube-shaped, whereas in the martensite form it is sheared. Six different sheared martensite crystals, having well - defined prism shapes (three of which appear in this video), can be created by pressing on 3 different faces of the cube. It is essential that the loading arrangement allows lateral displacements to occur. From TLP: Microstructural Changes. Video was kindly donated by Vaclav Novak and Petr Sittner, Department of Functional Materials Institute of Physics of the ASCR, Prague, Czech Republic Changes in microstructure of a shape memory alloy being heat treated and also mechanically deformed. A CuAlNi single crystal (2H orthorhombic phase ) is compressed (vertical axis) at room temperature, causing activation of two sequential twinning deformations. As austenite, the crystal is cube-shaped, whereas in the martensite form it is sheared. Six different sheared martensite crystals, having well - defined prism shapes (three of which appear in this video), can be created by pressing on 3 different faces of the cube. It is essential that the loading arrangement allows lateral displacements to occur. From TLP: Microstructural Changes. Video was kindly donated by Vaclav Novak and Petr Sittner, Department of Functional Materials Institute of Physics of the ASCR, Prague, Czech Republic

Subjects

microstructure | microstructure | shape memory alloy | shape memory alloy | deformation | deformation | DoITPoMS | DoITPoMS | University of Cambridge | University of Cambridge | video | video | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_videos.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Changes in microstructure of a shape memory alloy (bi-crystal of austenitic CuAlNi ) Changes in microstructure of a shape memory alloy (bi-crystal of austenitic CuAlNi )

Description

Changes in microstructure of a shape memory alloy being heat treated and also mechanically deformed. A bi-crystal of austenitic CuAlNi is cooled, causing transformation to the martensitic (2H orthorhombic) phase. The process is reversed in the second half of the video, as the specimen is heated again. The rate at which transformation occurs is controlled by heat flow effects. (The shear process itself tends to take place very rapidly.) The martensitic phase is internally twinned. This is very clear within the dark-coloured phase moving in from the left-hand side in the first part of this video. From TLP: Microstructural Changes. Video was kindly donated by Vaclav Novak and Petr Sittner, Department of Functional Materials Institute of Physics of the ASCR, Prague, Czech Republic Changes in microstructure of a shape memory alloy being heat treated and also mechanically deformed. A bi-crystal of austenitic CuAlNi is cooled, causing transformation to the martensitic (2H orthorhombic) phase. The process is reversed in the second half of the video, as the specimen is heated again. The rate at which transformation occurs is controlled by heat flow effects. (The shear process itself tends to take place very rapidly.) The martensitic phase is internally twinned. This is very clear within the dark-coloured phase moving in from the left-hand side in the first part of this video. From TLP: Microstructural Changes. Video was kindly donated by Vaclav Novak and Petr Sittner, Department of Functional Materials Institute of Physics of the ASCR, Prague, Czech Republic

Subjects

microstructure | microstructure | shape memory alloy | shape memory alloy | deformation | deformation | DoITPoMS | DoITPoMS | University of Cambridge | University of Cambridge | video | video | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_videos.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.054 Mechanics and Design of Concrete Structures (MIT) 1.054 Mechanics and Design of Concrete Structures (MIT)

Description

The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor The main objective of 1.054/1.541 is to provide students with a rational basis of the design of reinforced concrete members and structures through advanced understanding of material and structural behavior. This course is offered to undergraduate (1.054) and graduate students (1.541). Topics covered include: Strength and Deformation of Concrete under Various States of Stress; Failure Criteria; Concrete Plasticity; Fracture Mechanics Concepts; Fundamental Behavior of Reinforced Concrete Structural Systems and their Members; Basis for Design and Code Constraints; High-performance Concrete Materials and their use in Innovative Design Solutions; Slabs: Yield Line Theory; Behavior Models and Nonlinear Analysis; and Complex Systems: Bridge Structures, Concrete Shells, and Containments. Professor

Subjects

concrete structures | concrete structures | mechanics | mechanics | design | design | strength | strength | deformation | deformation | stress | stress | strain | strain | failure criteria | failure criteria | concrete plasticity | concrete plasticity | fracture mechanics | fracture mechanics | reinforced concrete | reinforced concrete | code constraints | code constraints | high-performance materials | high-performance materials | slabs | slabs | yield line theory | yield line theory | behavior models | behavior models | nonlinear analysis | nonlinear analysis | bridge structures | bridge structures | concrete shells | concrete shells | containments | containments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Mechanical Behaviour of Materials: Analysis of Deformation Processing Mechanical Behaviour of Materials: Analysis of Deformation Processing

Description

This set of animations explains how to construct hodographs and provides understanding of the forging process. From TLP: Analysis of Deformation Processing This set of animations explains how to construct hodographs and provides understanding of the forging process. From TLP: Analysis of Deformation Processing

Subjects

metal forming | metal forming | energy | energy | deformation process | deformation process | fem | fem | finite element analysis | finite element analysis | levy-mises | levy-mises | hodograph | hodograph | slip line | slip line | work formula | work formula | limit analysis | limit analysis | DoITPoMS | DoITPoMS | University of Cambridge | University of Cambridge | animation | animation | corematerials | corematerials | ukoer | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_animations.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.22 Mechanical Behavior of Materials (MIT) 3.22 Mechanical Behavior of Materials (MIT)

Description

Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications. Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications.

Subjects

Phenomenology | Phenomenology | mechanical behavior | mechanical behavior | material structure | material structure | deformation | deformation | failure | failure | elasticity | elasticity | viscoelasticity | viscoelasticity | plasticity | plasticity | creep | creep | fracture | fracture | fatigue | fatigue | metals | metals | semiconductors | semiconductors | ceramics | ceramics | polymers | polymers | microstructure | microstructure | composition | composition | semiconductor diodes | semiconductor diodes | thin films | thin films | carbon nanotubes | carbon nanotubes | battery materials | battery materials | superelastic alloys | superelastic alloys | defect nucleation | defect nucleation | student projects | student projects | viral capsides | viral capsides

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Materials I (MIT) Materials I (MIT)

Description

This course provides an introduction to the mechanics of solids with applications to science and engineering. We emphasize the three essential features of all mechanics analyses, namely: (a) the geometry of the motion and/or deformation of the structure, and conditions of geometric fit, (b) the forces on and within structures and assemblages; and (c) the physical aspects of the structural system (including material properties) which quantify relations between the forces and motions/deformation. This course provides an introduction to the mechanics of solids with applications to science and engineering. We emphasize the three essential features of all mechanics analyses, namely: (a) the geometry of the motion and/or deformation of the structure, and conditions of geometric fit, (b) the forces on and within structures and assemblages; and (c) the physical aspects of the structural system (including material properties) which quantify relations between the forces and motions/deformation.

Subjects

statics | statics | pressure | pressure | deformation | deformation | deformable solid | deformable solid | equilibrium | equilibrium | geometric compatibility | geometric compatibility | material behavior | material behavior | stress | stress | strain | strain | shear | shear | elasticity | elasticity | thermal expansion | thermal expansion | failure modes | failure modes | biomechanics | biomechanics | natural materials | natural materials | motion | motion | structure | structure | force | force | moment | moment | member | member | truss | truss | friction | friction | torsion | torsion | bending | bending | displacement | displacement | beam | beam

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata