Searching for dielectrics : 21 results found | RSS Feed for this search

8.02 Physics II: Electricity and Magnetism (MIT) 8.02 Physics II: Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Staff List Visualizations: Prof. John Belcher Instructors: Dr. Peter Dourmashkin Prof. Bruce Knuteson Prof. Gunther Roland Prof. Bolek Wyslouch Dr. Brian Wecht Prof. Eric Katsavounidis Prof. Robert Simcoe Prof. Joseph Formaggio Course Co-Administrators: Dr. Peter Dourmashkin Prof. Robert Redwine Technical Instructors: Andy Neely Matthew Strafuss Course This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Staff List Visualizations: Prof. John Belcher Instructors: Dr. Peter Dourmashkin Prof. Bruce Knuteson Prof. Gunther Roland Prof. Bolek Wyslouch Dr. Brian Wecht Prof. Eric Katsavounidis Prof. Robert Simcoe Prof. Joseph Formaggio Course Co-Administrators: Dr. Peter Dourmashkin Prof. Robert Redwine Technical Instructors: Andy Neely Matthew Strafuss CourseSubjects

electromagnetism | electromagnetism | electrostatics | electrostatics | electric charge | electric charge | Coulomb's law | Coulomb's law | electric structure of matter | electric structure of matter | conductors | conductors | dielectrics | dielectrics | electrostatic field | electrostatic field | potential | potential | electrostatic energy | electrostatic energy | Electric currents | Electric currents | magnetic fields | magnetic fields | Ampere's law | Ampere's law | Magnetic materials | Magnetic materials | Time-varying fields | Time-varying fields | Faraday's law of induction | Faraday's law of induction | electric circuits | electric circuits | Electromagnetic waves | Electromagnetic waves | Maxwell's equations | Maxwell's equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.022 Physics II: Electricity and Magnetism (MIT) 8.022 Physics II: Electricity and Magnetism (MIT)

Description

This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials. This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts. This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials. This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts.Subjects

Electricity | Electricity | Magnetism | Magnetism | Maxwell's equations | Maxwell's equations | electrostatic potential | electrostatic potential | vector potential | vector potential | dielectrics | dielectrics | Coulomb's Law | Coulomb's Law | Electric Field | Electric Field | Electric Flux | Electric Flux | Gauss's Law | Gauss's Law | Electric Potential Gradient | Electric Potential Gradient | Poisson Equations | Poisson Equations | Laplace Equations | Laplace Equations | Curl | Curl | Conductors | Conductors | Capacitance | Capacitance | Resistance | Resistance | Kirchhoff's Rules | Kirchhoff's Rules | EMF | EMF | RC Circuits | RC Circuits | Th?venin Equivalence | Th?venin Equivalence | Magnetic Force | Magnetic Force | Magnetic Field | Magnetic Field | Ampere's Law | Ampere's Law | Special Relativity | Special Relativity | Spacetime | Spacetime | Biot-Savart Law | Biot-Savart Law | Faraday's Law | Faraday's Law | Lenz's Law | Lenz's Law | RL Circuits | RL Circuits | AC Circuits | AC Circuits | Electromagnetic Radiation | Electromagnetic Radiation | Poynting Vector | Poynting VectorLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataMagnetism with an Experimental Focus (MIT) Magnetism with an Experimental Focus (MIT)

Description

This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli. This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.Subjects

Electromagnetism | Electromagnetism | electrostatics | electrostatics | electric charge | electric charge | Coulomb's law | Coulomb's law | electric structure of matter | electric structure of matter | conductors | conductors | dielectrics | dielectrics | electrostatic field | electrostatic field | electrostatic potential | electrostatic potential | electrostatic energy | electrostatic energy | electric current | electric current | magnetic field | magnetic field | Ampere's law | Ampere's law | magnetic | magnetic | electric | electric | time-varying fields | time-varying fields | Faraday's law | Faraday's law | induction | induction | circuits | circuits | electromagnetic waves | electromagnetic waves | Maxwell's equations | Maxwell's equations | 8.02 | 8.02License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.02T Electricity and Magnetism (MIT) 8.02T Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, a This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, aSubjects

electromagnetism | electromagnetism | electrostatics | electrostatics | electric charge | electric charge | Coulomb's law | Coulomb's law | electric structure of matter | electric structure of matter | conductors | conductors | dielectrics | dielectrics | electrostatic field | electrostatic field | potential | potential | electrostatic energy | electrostatic energy | Electric currents | Electric currents | magnetic fields | magnetic fields | Ampere's law | Ampere's law | Magnetic materials | Magnetic materials | Time-varying fields | Time-varying fields | Faraday's law of induction | Faraday's law of induction | electric circuits | electric circuits | Electromagnetic waves | Electromagnetic waves | Maxwell's equations | Maxwell's equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.022 Physics II: Electricity and Magnetism (MIT) 8.022 Physics II: Electricity and Magnetism (MIT)

Description

Course 8.022 is one of several second-term freshman physics courses offered at MIT. It is geared towards students who are looking for a thorough and challenging introduction to electricity and magnetism. Topics covered include: Electric and magnetic field and potential; introduction to special relativity; Maxwell's equations, in both differential and integral form; and properties of dielectrics and magnetic materials. In addition to the theoretical subject matter, several experiments in electricity and magnetism are performed by the students in the laboratory. Acknowledgments Prof. Sciolla would like to acknowledge the contributions of MIT Professors Scott Hughes and Peter Fisher to the development of this course. She would also like to acknowledge that these course materials include cont Course 8.022 is one of several second-term freshman physics courses offered at MIT. It is geared towards students who are looking for a thorough and challenging introduction to electricity and magnetism. Topics covered include: Electric and magnetic field and potential; introduction to special relativity; Maxwell's equations, in both differential and integral form; and properties of dielectrics and magnetic materials. In addition to the theoretical subject matter, several experiments in electricity and magnetism are performed by the students in the laboratory. Acknowledgments Prof. Sciolla would like to acknowledge the contributions of MIT Professors Scott Hughes and Peter Fisher to the development of this course. She would also like to acknowledge that these course materials include contSubjects

Electricity | Electricity | Magnetism | Magnetism | Maxwell's equations | Maxwell's equations | electrostatic potential | electrostatic potential | vector potential | vector potential | dielectrics | dielectrics | Coulomb's Law | Coulomb's Law | Electric Field | Electric Field | Electric Flux | Electric Flux | Gauss's Law | Gauss's Law | Electric Potential Gradient | Electric Potential Gradient | Poisson Equations | Poisson Equations | Laplace Equations | Laplace Equations | Curl | Curl | Conductors | Conductors | Capacitance | Capacitance | Resistance | Resistance | Kirchhoff's Rules | Kirchhoff's Rules | EMF | EMF | RC Circuits | RC Circuits | Th?venin Equivalence | Th?venin Equivalence | Magnetic Force | Magnetic Force | Magnetic Field | Magnetic Field | Ampere's Law | Ampere's Law | Special Relativity | Special Relativity | Spacetime | Spacetime | Biot-Savart Law | Biot-Savart Law | Faraday's Law | Faraday's Law | Lenz's Law | Lenz's Law | RL Circuits | RL Circuits | AC Circuits | AC Circuits | Electromagnetic Radiation | Electromagnetic Radiation | Poynting Vector | Poynting Vector | Magnetism | Maxwell's equations; | Magnetism | Maxwell's equations;License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Introduction to electromagnetism and electrostatics: electric charge, Coulomb's law, electric structure of matter; conductors and dielectrics. Concepts of electrostatic field and potential, electrostatic energy. Electric currents, magnetic fields and Ampere's law. Magnetic materials. Time-varying fields and Faraday's law of induction. Basic electric circuits. Electromagnetic waves and Maxwell's equations.Staff Credits for TEAL Visualizations:Project Manager: Andrew McKinneyJava 3D Applets: Andrew McKinney, Philip Bailey, Pierre Poignant, Ying Cao, Ralph Rabat, Mikael Rechtsman3D Illustration/Animation: Mark BessetteShockWave Visualizations: Michael DanzigerVisualization Techniques R&D: Andreas Sundquist (DLIC), Mesrob Ohannessian (IDRAW)Technical RequirementsRealOne™ Introduction to electromagnetism and electrostatics: electric charge, Coulomb's law, electric structure of matter; conductors and dielectrics. Concepts of electrostatic field and potential, electrostatic energy. Electric currents, magnetic fields and Ampere's law. Magnetic materials. Time-varying fields and Faraday's law of induction. Basic electric circuits. Electromagnetic waves and Maxwell's equations.Staff Credits for TEAL Visualizations:Project Manager: Andrew McKinneyJava 3D Applets: Andrew McKinney, Philip Bailey, Pierre Poignant, Ying Cao, Ralph Rabat, Mikael Rechtsman3D Illustration/Animation: Mark BessetteShockWave Visualizations: Michael DanzigerVisualization Techniques R&D: Andreas Sundquist (DLIC), Mesrob Ohannessian (IDRAW)Technical RequirementsRealOne™Subjects

dielectrics | dielectrics | conductors | conductors | electric structure of matter | electric structure of matter | Coulomb's law | Coulomb's law | electrostatics | electrostatics | electromagnetism | electromagnetismLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.02T Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, aSubjects

electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | electric circuits | Electromagnetic waves | Maxwell's equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.02 Electricity and Magnetism (MIT)

Description

In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8Subjects

Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.02 Electricity and Magnetism (MIT)

Description

In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8Subjects

Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.022 Physics II: Electricity and Magnetism (MIT)

Description

This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials. This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts.Subjects

Electricity | Magnetism | Maxwell's equations | electrostatic potential | vector potential | dielectrics | Coulomb's Law | Electric Field | Electric Flux | Gauss's Law | Electric Potential Gradient | Poisson Equations | Laplace Equations | Curl | Conductors | Capacitance | Resistance | Kirchhoff's Rules | EMF | RC Circuits | Th?venin Equivalence | Magnetic Force | Magnetic Field | Ampere's Law | Special Relativity | Spacetime | Biot-Savart Law | Faraday's Law | Lenz's Law | RL Circuits | AC Circuits | Electromagnetic Radiation | Poynting VectorLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataCore Physics PBL – Sugar Capacity.

Description

Students will have four laboratory sessions to perform their experiments, as well as two seminars with facilitators. For each of the seminars students should submit answers to set question, which will then be checked and corrected if they need to be. The questions are designed to give ideas or direction to the laboratory work undertaken.Subjects

sfsoer | ukoer | capacitance | lcr circuits | inductance | dielectrics | parallel plate capacitors | Physical sciences | F000License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.02 Physics II: Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Staff List Visualizations: Prof. John Belcher Instructors: Dr. Peter Dourmashkin Prof. Bruce Knuteson Prof. Gunther Roland Prof. Bolek Wyslouch Dr. Brian Wecht Prof. Eric Katsavounidis Prof. Robert Simcoe Prof. Joseph Formaggio Course Co-Administrators: Dr. Peter Dourmashkin Prof. Robert Redwine Technical Instructors: Andy Neely Matthew Strafuss CourseSubjects

electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | electric circuits | Electromagnetic waves | Maxwell's equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.022 Physics II: Electricity and Magnetism (MIT)

Description

This course runs parallel to 8.02, but assumes that students have some knowledge of vector calculus. The class introduces Maxwell's equations, in both differential and integral form, along with electrostatic and magnetic vector potential, and the properties of dielectrics and magnetic materials. This class was taught by an undergraduate in the Experimental Study Group (ESG). Student instructors are paired with ESG faculty members, who advise and oversee the students' teaching efforts.Subjects

Electricity | Magnetism | Maxwell's equations | electrostatic potential | vector potential | dielectrics | Coulomb's Law | Electric Field | Electric Flux | Gauss's Law | Electric Potential Gradient | Poisson Equations | Laplace Equations | Curl | Conductors | Capacitance | Resistance | Kirchhoff's Rules | EMF | RC Circuits | Th?venin Equivalence | Magnetic Force | Magnetic Field | Ampere's Law | Special Relativity | Spacetime | Biot-Savart Law | Faraday's Law | Lenz's Law | RL Circuits | AC Circuits | Electromagnetic Radiation | Poynting VectorLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataMagnetism with an Experimental Focus (MIT)

Description

This course is an introduction to electromagnetism and electrostatics. Topics include: electric charge, Coulomb's law, electric structure of matter, conductors and dielectrics, concepts of electrostatic field and potential, electrostatic energy, electric currents, magnetic fields, Ampere's law, magnetic materials, time-varying fields, Faraday's law of induction, basic electric circuits, electromagnetic waves, and Maxwell's equations. The course has an experimental focus, and includes several experiments that are intended to illustrate the concepts being studied. Acknowledgements Prof. Roland wishes to acknowledge that the structure and content of this course owe much to the contributions of Prof. Ambrogio Fasoli.Subjects

Electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | electrostatic potential | electrostatic energy | electric current | magnetic field | Ampere's law | magnetic | electric | time-varying fields | Faraday's law | induction | circuits | electromagnetic waves | Maxwell's equations | 8.02License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.02T Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, aSubjects

electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | electric circuits | Electromagnetic waves | Maxwell's equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.02T Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, aSubjects

electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | electric circuits | Electromagnetic waves | Maxwell's equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.02 Electricity and Magnetism: TEAL:Studio Physics Project (MIT)

Description

Introduction to electromagnetism and electrostatics: electric charge, Coulomb's law, electric structure of matter; conductors and dielectrics. Concepts of electrostatic field and potential, electrostatic energy. Electric currents, magnetic fields and Ampere's law. Magnetic materials. Time-varying fields and Faraday's law of induction. Basic electric circuits. Electromagnetic waves and Maxwell's equations.Staff Credits for TEAL Visualizations:Project Manager: Andrew McKinneyJava 3D Applets: Andrew McKinney, Philip Bailey, Pierre Poignant, Ying Cao, Ralph Rabat, Mikael Rechtsman3D Illustration/Animation: Mark BessetteShockWave Visualizations: Michael DanzigerVisualization Techniques R&D: Andreas Sundquist (DLIC), Mesrob Ohannessian (IDRAW)Technical RequirementsRealOne™Subjects

dielectrics | conductors | electric structure of matter | Coulomb's law | electrostatics | electromagnetismLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.022 Physics II: Electricity and Magnetism (MIT)

Description

Course 8.022 is one of several second-term freshman physics courses offered at MIT. It is geared towards students who are looking for a thorough and challenging introduction to electricity and magnetism. Topics covered include: Electric and magnetic field and potential; introduction to special relativity; Maxwell's equations, in both differential and integral form; and properties of dielectrics and magnetic materials. In addition to the theoretical subject matter, several experiments in electricity and magnetism are performed by the students in the laboratory. Acknowledgments Prof. Sciolla would like to acknowledge the contributions of MIT Professors Scott Hughes and Peter Fisher to the development of this course. She would also like to acknowledge that these course materials include contSubjects

Electricity | Magnetism | Maxwell's equations | electrostatic potential | vector potential | dielectrics | Coulomb's Law | Electric Field | Electric Flux | Gauss's Law | Electric Potential Gradient | Poisson Equations | Laplace Equations | Curl | Conductors | Capacitance | Resistance | Kirchhoff's Rules | EMF | RC Circuits | Th?venin Equivalence | Magnetic Force | Magnetic Field | Ampere's Law | Special Relativity | Spacetime | Biot-Savart Law | Faraday's Law | Lenz's Law | RL Circuits | AC Circuits | Electromagnetic Radiation | Poynting Vector | Magnetism | Maxwell's equations;License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.02SC Physics II: Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism, including electric fields, magnetic fields, electromagnetic forces, conductors and dielectrics, electromagnetic waves, and the nature of light.Subjects

electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | electric circuits | Electromagnetic waves | Maxwell's equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allocwscholarcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.02 Electricity and Magnetism (MIT)

Description

In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8Subjects

Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allkoreancourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.02T Electricity and Magnetism (MIT)

Description

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism. The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena. Acknowledgements The TEAL project is supported by The Alex and Brit d'Arbeloff Fund for Excellence in MIT Education, MIT iCampus, the Davis Educational Foundation, the National Science Foundation, the Class of 1960 Endowment for Innovation in Education, the Class of 1951 Fund for Excellence in Education, the Class of 1955 Fund for Excellence in Teaching, aSubjects

electromagnetism | electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | electrostatic field | potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | electric circuits | Electromagnetic waves | Maxwell's equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata